
DCE RPC INTERNALS AND DATA STRUCTURES

revision 1.0
August, 1993
Open Software Foundation



The information contained within this document is subject to change without notice.
OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages
in connection with the furnishing, performance, or use of this material.
 Copyright  1993 Open Software Foundation, Inc. This documentation and the software to which it relates are derived in
part from materials supplied by the following:

Copyright 1990, 1991 Digital Equipment Corporation
 Copyright 1990, 1991 Hewlett-Packard Company
 Copyright 1989, 1990, 1991 Transarc Corporation
 Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG
 Copyright 1990, 1991 International Business Machines Corporation
 Copyright 1988, 1989 Massachusetts Institute of Technology
 Copyright 1988, 1989 The Regents of the University of California

All Rights Reserved
Printed in the U.S.A.
THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND
MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND
SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.
 Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foun-
dation, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S. and other countries.
DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation. DECstation 3100 and DECnet
are trademarks of Digital Equipment Corporation.
HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.
 Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.
AFS and Transarc are registered trademarks of the Transarc Corporation. Episode is a trademark of the Transarc Corpora-
tion.
Ethernet is a registered trademark of Xerox Corporation.
AIX and RISC System/6000 are trademarks of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.
DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG. MX300i is a trademark of Siemens Nixdorf Informa-
tionssysteme AG.
NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.
X/Open is a trademark of the X/Open Company Limited in the U.K. and other countries.
PostScript is a trademark of Adobe Systems Incorporated.
FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFT-
WARE
These notices shall be marked on any reproduction of this data, in whole or in part.
NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer soft-
ware, the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the
FARS Computer Software-Restricted Rights clause.
RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.
RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth
in paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer
software is submitted with “restricted rights.” Use, duplication or disclosure is subject to the restrictions as set forth in
NASA FAR SUP 18-52.227-79 (April 1985) “Commercial Computer Software-Restricted Rights (April 1985).” If the con-
tract contains the Clause at 18-52.227-74 “Rights in Data General” then the “Alternate III” clause applies.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished - All rights reserved under the Copyright Laws of the United States.
This notice shall be marked on any reproduction of this data, in whole or in part.



Contents
Introduction

A Few Words About This Book 1-1
Our Audience 1-1
Our Methods 1-1
Notes on This Document 1-2
Related Information 1-2
DCE RPC Runtime Design Goals 1-2
Service Paradigm 1-2
The Client’s View 1-2
The Server’s View 1-2
The Application’s View 1-2
Objects, Managers, Operations 1-2
Organization of the Source Code 1-2
Logical Organization 1-2
Physical Organization 1-2

Fundamental Concepts
Threads 2-1
How the RPC Runtime Uses Threads 2-1
Thread Exception Model 2-1
Cancels 2-1
Fork Handling 2-1
Procedure Pointers 2-1
Error Propagation, Error Handling 2-3

Common Services
Mutex Services 3-2
Mutex and Condition Variable Data Structures 3-2
Mutex Service Internal Operations 3-5
List Services 3-6
UUID Services 3-7
Memory Object Services 3-7
Clock and Timer Services 3-8
RPC Timer Service Data Structures 3-9



RPC Clock and Timer Service Internal Operations 3-10
Establishing and Managing Wall Clock Time 3-11
Managing the Timer Queue 3-12
The Timer Loop 3-12
Call Thread Services 3-13
Principal Call Thread Data Structures and Their Relationships 3-14
 Call Thread Service Internal Operations 3-17
Creating Thread Pools 3-18
Assigning a Thread to a Call 3-19
Shutting Down Thread Pools 3-21
The Call Thread Reaper 3-21
The Network Listener Thread 3-21
Common Binding Services 3-22
RPC Binding Service Data Structures 3-23
Common Binding Services Internal Operations 3-25
Allocating and Initializing a Binding 3-26
Operations on Individual Fields of Binding Data 3-27
String Binding Operations 3-27
Miscellaneous Public and Private Common Binding Routines 3-28
Freeing Binding Resources 3-28
Common Socket Services 3-29
Network Address Family Services 3-30
Major Data Structures 3-30
Common naf Services Internal Operations 3-31
Common Interface Registry Services 3-32
Terminology 3-32
Interface Registry Data Structures 3-33
 Common Interface Registry Internal Operations 3-35
Private/Internal Functions 3-36
Public Interfaces 3-38
Object Registry Services 3-38
Object Registry Data Structures 3-39
Object Registry Internal Operations 3-39



RPC Nameservice Interface
A Brief Overview of NSI Services 4-1
Protocol Tower Services 4-3
Protocol Tower Data Structures 4-4
Tower Service Internal Operations 4-6
Building Upper Floors 4-6
Building Lower Floors 4-7
Tower Reference Manipulations 4-8
Examining Binding Data 4-8
Building Towers from Binding Handles 4-8
Freeing Runtime Tower Reference Structures 4-9
NSI Lookup Services 4-9
NSI Lookup Services Data Structures 4-10
Lookup Services Internal Operations 4-12
NSI Search Algorithm 4-13
Initialization 4-14
Binding Lookup 4-14
Binding Selection 4-16
Freeing Resources 4-16
NSI Binding Services 4-17
NSI Binding Services Data Structures 4-17
NSI Binding Services Internal Operations 4-17
Export Operations 4-17
Import Operations 4-18

Endpoint Mapping Services
Overview of Endpoint Services 5-2
The Endpoint Database 5-3
Major Endpoint Database Data Structures 5-4
Endpoint Database Internal Operations 5-8
Basic Database Management Routines 5-9
Endpoint Database Internal Operations 5-11
Common Endpoint Services 5-14
Registering Endpoint Entries 5-15



Finding Matching Entries 5-17
Endpoint Services Data Structures 5-18
Common Endpoint Services Internal Operations 5-19
Public Endpoint Operations 5-19
Private Endpoint Mapper Operations 5-20
The Endpoint Mapper Manager EPV 5-21
Other Endpoint Mapper Services 5-22
Monitoring Server Liveness 5-22
Forwarding 5-23

Datagram Protocol Service, part I
Datagram RPC Protocol Service Elements 6-1
Datagram RPC Packet Structure and Contents 6-3
Datagram RPC Packet Types 6-4
The Datagram RPC Packet Header 6-5
Specialized Packet Body Types 6-9
Flow Control 6-11
Flow Control on an Error-Free Connection 6-13
Flow Control Under Lossy Conditions 6-14
Selective Acknowledgment 6-14
Packet Serialization 6-15
Retransmission Strategy 6-15
The Packet Pipeline 6-16
Activity IDs, Fragment, Sequence, and Serial Numbers 6-17
Major Datagram Protocol Service Data Structures 6-18
Reference Counts 6-18
Transmit and Receive Queues 6-19
Transmit Queues and Queue Elements 6-19
Receive Queues and Queue Elements 6-23
Client and Server Connection Tables 6-25
Client Connection Table and Table Elements 6-25
Server Connection Table and Table Elements 6-26
Client and Server Call Handles 6-28
Common Call Handle Structure 6-29



Common Datagram RPC Call Handles 6-30
Client Call Handle 6-33
Server Call Handle 6-35
Data Structure Relationships 6-35

Datagram Protocol Service, part II
Call Handle States 7-1
Client Call Handle State Transitions 7-1
Server Call Handle State Transitions 7-3
Call Types 7-6
Maybe Calls 7-7
Broadcast Calls 7-7
Idempotent Calls 7-8
Non-Idempotent Calls 7-9
Authenticated Calls 7-10
“Slow” Calls 7-10
Multi-Fragment Calls 7-11
Extraordinary Conditions (Rejects, Faults, Cancels, Orphans) 7-12
Packet Processing in the Listener Thread 7-13
Top-Level Packet Dispatching 7-14
Fack Handling 7-15
Forwarding 7-16
Forwarding a Packet 7-17
Processing a Forwarded Packet 7-18
The Packet Forwarding Function 7-19
Liveness, Context, and Conversation Callbacks 7-19
The Conversation Manager 7-20
Context Handle Support 7-22
The Server-Side Client Representation 7-23
The convc_indy Operation 7-23
Server-Side Listener Operations 7-24
Request Handling 7-24
Packet Rationing 7-25
Server Side Rationing Concerns 7-27



Client Side Rationing Concerns 7-28
Major Packet Rationing Data Structures and Internal Operations 7-28
Call Execution 7-30
Ping Handling 7-33
Cancel Processing 7-33



List of Figures
Using an Entrypoint Vector 2-3
RPC List Organization 3-7
The timer thread and timer queue. 3-10
RPC Clock and Timer Operations 3-11
Default Call Thread Relationships 3-16
Reserved Pool Call Thread Relationships 3-17
Call Thread Services Internal Operations 3-18
The Call Thread Queue 3-20
Call Thread Queue Relationships 3-21
RPC Common Binding Services 3-26
String Binding Operations 3-28
Common Socket Services 3-30
Interface Registry and Type Info Lists 3-35
Common Interface Registry Internal Operations 3-36
Object Registry Internal Operations 3-39
Example NSI Entry Types 4-2
CDS NSI Attributes 4-3
Tower Data Layout 4-6
Tower Service Routines 4-7
NSI Lookup Context, Nodes, and Elements 4-12
NSI Lookup Service Internal Operations 4-13
NSI Search Algorithm 4-14
Looking Up a Binding 4-16
The rpcd’s Role 5-2
Endpoint Database Entries and Lists 5-7
Getting an Entry into the Endpoint Database 5-8
Endpoint Database Internal Operations 5-9
Composing a Server Registration 5-15
ept_register pseudocode 5-16
Endpoint Database Entry Replacement 5-17
Endpoint Mapper Object/Interface Matching Rules 5-18
Common Endpoint Services Internal Operations 5-19



Datagram RPC Protocol Service Elements 6-2
Datagram RPC Packet Types and Directions 6-4
Packet Flags and Directions 6-8
Datagram RPC Packet Header Layout 6-9
Specialized Packet Bodies 6-11
Congestion Window Growth 6-13
Selective Acknowledgment 6-15
Activity ID, Fragment, Sequence, and Serial Number 6-18
Using Reference Counts 6-19
Call Handle Structures 6-29
Client Datagram RPC Data Structure Relationships 6-36
Server Datagram RPC Structure Relationships 6-37
Client Call Handle State Transitions 7-3
Server Call Handle State Transitions 7-4
Analyzing a Received Packet 7-5
A Maybe Call 7-7
A Broadcast Call 7-8
An Idempotent Call 7-9
A Non-Idempotent Call 7-10
A “Slow” Call (Idempotent) 7-11
Multi-Packet Calls 7-12
Rejects, Faults, Cancels, and Orphans 7-13
Listener Thread Routines 7-15
Forwarding a Packet 7-18
Processing a Forwarded Packet 7-19
The Conversation Manager 7-22
Client Liveness Maintenance 7-24
Server Side Packet Rationing 7-27
Call Execution 7-32



List of Data Structures
rpc_mutex_t data structure 3-3
rpc_mutex_stats_t data structure 3-4
rpc_cond_t data structure 3-4
rpc_cond_stats_t data structure 3-4
rpc_timer_t structure 3-9
cthread_elt_t structure 3-14
cthread_pool_elt_t structure 3-15
cthread_queue_elt_t structure 3-15
rpc_cthread_pvt_info structure 3-16
rpc_binding_rep_t structure 3-23
rpc_naf_id_elt_t structure 3-31
rpc_addr_p_t structure 3-31
rpc_if_rgy_entry_t structure 3-33
rpc_if_type_info_t structure 3-33
rpc_if_rep_t structure 3-34
rpc_obj_rgy_entry_t structure 3-39
rpc_tower_floor_t data structure 4-4
rpc_tower_ref_t structure 4-5
rpc_tower_ref_vector_t structure 4-5
rpc_lkup_rep_t structure 4-10
rpc_lkup_node_t structure 4-11
rpc_lkup_mbr_t structure 4-11
rpc_import_rep_t structure 4-17
ept_entry_t structure 5-4
db_entry_t structure 5-5
db_lists_t structure 5-6
db_lists_mgmt_t structure 5-6
db_contexth_t structure 5-10
db structure 5-11
mgmt_ep_inq_rep_t data structure 5-18
rpc_dg_pkt_hdr_t structure 6-6
rpc_dg_fackpkt_body_t structure 6-10



rpc_dg_xmitq_elt_t 6-20
rpc_dg_xmitq_elt_t structure 6-21
rpc_dg_recvq_elt_t structure 6-23
rpc_dg_recvq_t structure 6-24
rpc_dg_cct_elt_t structure 6-25
rpc_dg_cct_t structure 6-25
rpc_dg_cct_elt_ref_t structure 6-26
rpc_dg_sct_elt_t structure 6-27
rpc_call_rep_t structure 6-30
rpc_dg_call_t structure 6-31
rpc_dg_ccall_t structure 6-34
rpc_dg_scall_t structure 6-35
rpc_dg_client_rep_t structure 7-23
rpc_dg_pkt_pool_t structure 7-29
rpc_dg_pkt_pool_elt_t structure 7-30



Revised 7/15/93 Introduction

Copyright  1993 Open Software Foundation 1-1

Chapter 1: Introduction

A Few Words About This Book
This book is the result of a cooperative effort managed by OSF, and drawing on
contributions from OSF, Hewlett-Packard Company, and Digital Equipment Cor-
poration. We intend it to stand alongside the DCE RPC Application Environment
Specification (AES) and the DCE RPC source code, and expect it to furnish infor-
mation that programmers can use to help them better understand the DCE RPC
runtime implementation and its relationship to the facilities described in the AES.

Our Audience
We expect that our readers are:
• experienced software engineers, with a good understanding of modern soft-

ware engineering practices, the C programming language, and the Unix pro-
gramming environment.

• knowledgable about the various components of DCE, including the RPC run-
time, to the point where high-level conceptual information (e.g., “what is a
name service...”) need not be generally included in this document.

• familiar with other protocol implementations, especially those described in
Internet RFC 768 (UDP/IP) and 793 (TCP/IP).

We have written this book for programmers who are working on the RPC runtime
implementation itself (extending it, for example, or otherwise refining its opera-
tions), rather than for application programmers who want to make use of DCE
RPC. While the latter may find much of interest here, there are other documents
that concentrate on helping application programmers understand how to develop
DCE applications.

Our Methods
In general we rely on the AES to supply the official descriptions of facilities and
their intended uses. As a rule, we do not, in this volume, reiterate the contents of
that volume’s functional descriptions (man pages) or background information. We
also rely on the code itself, which is generally well organized and profusely com-
mented, to describe its own low level operations. We do not typically provide a
textual rendering (e.g., functionA calls functionB, which calls functionC, …) of
code internals except in cases where important implementation details have not
been (or cannot be) adequately conveyed in the comments.
In this book, we want to fill in the space between the high-level, implementation-
generic description in the AES and the detailed information in the code and its
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comments. We also want to describe why things are implemented in a particular
way, and what kinds of trade-offs are perhaps not explicitly obvious from the code
itself.

Notes on This Document
This document is not complete.  We are providing it because we think it will be useful.
Time constraints have limited our coverage of major topics and have resulted in
sporadic glossings-over of material that should receive a lit-
tle more description. Major topics not addressed in this edition include:
• Authenticated RPC
• Kernel RPC
• The connection-based protocol service.

NOTICE

This document is for informational purposes only.
We make no guarantee that this corresponds to any available source.
We know there are areas that are incomplete and inaccurate.
We make no commitment to updating this document.
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Chapter 2: Fundamental Concepts

Before we begin describing the RPC runtime’s operations in detail, we think it will
prove useful to introduce our audience to several aspects of the implementation
that have far-reaching consequences, or have implications that may not be immedi-
ately obvious, or both. Nothing we describe here has the status of a discrete facility
or module. For the most part, things discussed in this Chapter are things we believe
can benefit form a single, early, statement of rationale and methodology, which
will ground the reader in some of the more arcane practices adhered to by the
implementors and allow us, in later chapters, to skip lightly over what would oth-
erwise become tiresome and repetitious. While some of what we describe here
would probably be easier to understand in context, we believe that with DCE RPC,
as with all examples of good software design, the abstractions themselves make
adequate sense. And besides, there is plenty of context available later in the book.

Threads
Several areas are not discussed in this document. The
intention is to provide a high-level view of thread use. Specialized uses of threads
are described along with the material on those services that use them. (For exam-
ple, we describe Thread Pools in the section on Call Threads in Chapter 3.) Like-
wise, individual implementations of fork handlers are described along with the
descriptions of the facilities in which they run. The text here is intended to intro-
duce the concept of fork handling in a way that sets the stage for these later
descriptions.

How the RPC Runtime Uses Threads
Thread Exception Model
Cancels
Fork Handling

Procedure Pointers
One of the more common implementation techniques in the RPC runtime involves
establishing a data structure we refer to as an entrypoint vector (epv), which is
nothing more than a collection of pointers to procedures that typically perform a
generic function (e.g., setting a network address) in a specific way (e.g., for an IP
address). The runtime’s need to support multiple protocols, network address fami-
lies, protocol sequences, nameservices, and so on, makes this sort of capability
extremely useful.
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In many ways, this epv style (as we’ll call it) of programming is just a way to bring
object-oriented techniques to bear on what would otherwise be a tangle of facility-
specific code. By construing the generic functions (e.g., setting a network address)
as objects and the pointed-at implementations thereof as methods, it is possible to
build a system in which a suitable concatenation of object descriptors yields a pro-
cedure call that invokes the appropriate method. To make such concatenations pos-
sible, the runtime typically:
• organizes information useful to the callers of epv-based functions as arrays or

lists.
• defines a field in each array element or list entry that is initialized to that

entry’s position in the array or list, such that the value for the “i’th” element of
one of these arrays is “i.”

• defines half a dozen epv structures that provide entrypoints into implementa-
tion-dependent code that resides, for the most part, in the protocol services.

The runtime defines epv structures that allow access to network address family,
network, binding, security, and call services. We describe these epvs and their
pointed-at members later in this book. Regardless of facility specifics and other
implementation details, all epv calls look something like this:

facility.epv->operation (args)

The epv structure through which the call will be made is often found by “building
up” an index based on information at hand. For example the Network Address
Family (naf) services rely extensively on calls through the naf_epv structure,
which they reference as follows:

(*rpc_g_naf_id[naf_id].epv->operation (args))
In many cases, the common part of the code is merely a means of handing off argu-
ments to an epv member, as is the case in the code fragment below (from
comnaf.c).

void rpc__naf_addr_alloc (protseq_id, naf_id, endpoint,
netaddr, network_options, rpc_addr, status)

rpc_protseq_id_t        protseq_id;
rpc_naf_id_t            naf_id;
unsigned_char_p_t       endpoint;
unsigned_char_p_t       netaddr;
unsigned_char_p_t       network_options;
rpc_addr_p_t            *rpc_addr;
unsigned32              *status;
{

(*rpc_g_naf_id[naf_id].epv->naf_addr_alloc)
(protseq_id, naf_id, endpoint, netaddr,
network_options,rpc_addr, status);

}

This style of constructing an epv index from one of the input (to the epv) call’s
arguments can be illustrated, in prototype as shown in Figure 2-1.
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Figure 2-1: Using an Entrypoint Vector

Other facilities may simply reference the epv structure by name, as in this example
from the common portion of the network listener services code in comnet.c.

PUBLIC void rpc_network_stop_monitoring
(binding_h, client_h, status)

rpc_binding_handle_t        binding_h;
rpc_client_handle_t         client_h;
unsigned32                  *status;

{
rpc_protocol_id_t       protid;
rpc_prot_network_epv_p_t net_epv;
rpc_binding_rep_p_t     \

binding_rep = (rpc_binding_rep_p_t) binding_h;

/*
* Get the protocol id from the binding handle
*/
protid = binding_rep->protocol_id;
net_epv = RPC_PROTOCOL_INQ_NETWORK_EPV (protid);

/*
* Pass through to the network protocol routine.
*/

(*net_epv->network_stop_mon)
(binding_rep, client_h, status);

}

Error Propagation, Error Handling
Not discussed in this document.

rpc__naf_addr_alloc ( ..., naf_id, ..., ...)

(*rpc_g_naf_id[naf_id].epv->naf_addr_alloc)

rpc_naf_epv_t
...
...
naf_addr_alloc
...
...

rpc_naf_id_elt_t
naf_init
naf_id
network_if_id
*epv

rpc_g_naf_id[ ]
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Chapter 3: Common Services

The RPC runtime library’s Common Communications Services are used by both
clients and servers, and by the connectionless and connection-oriented protocol
machinery. These services include:
• Mutex (mutual exclusion) locking and condition variable services that provide

a means of controlling access to shared data during critical operations and oth-
erwise co-ordinating the activities of threads.

• List services that provide a generally useful system of doubly-linked lists.
• Memory object services that organize and provide simple routines to manage

all fundamental in-memory objects created (and deleted) by RPC runtime
operations.

• UUID services that create, examine, and manipulate Universal Unique IDenti-
fiers.

• Clock services and related timer services that support the many interval-based
service routines included in the datagram and connection-oriented protocol
services.

• Call thread services that manage creation and assignment of the threads that
actually execute remote procedure calls in server manager code.

• Binding services that maintain the common parts of a binding’s internal repre-
sentation.

• Socket and network address family services that provide a portable veneer over
a variety of host OS communication endpoints.

• Interface and Object registry services that maintain per-server lists of sup-
ported object and interface UUIDs.

Some of these services are conceptually straightforward and need only be touched
on briefly here to explain their place in the hierarchy of RPC runtime operations.
Others require somewhat more discussion, since many details of their design and
implementation are motivated by (perhaps) non-obvious requirements of the RPC
protocol.
Nearly all of the services we describe in this chapter are defined and implemented
in the source files rpc*.[ch] and com*.[ch].
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Mutex Services
As we noted in Chapter 2 of this document, the RPC runtime library makes exten-
sive use of threads. Any multithreaded facility will have a frequent need to invoke
mutex (mutual exclusion) locking of critical data, and a related need to use and
protect the condition variables that form the basis of thread synchronization. The
RPC runtime library provides a collection of functions and macros, defined in
rpcmutex.c and rpcmutex.h h, that implement various mutex and condition
variable operations based on the mutex and condition variable services provided
by the DCE threads package. The RPC mutex services are designed to be more or
less independent of the underlying threads implementation, making it possible to
support DCE RPC over practically any pre-emptive multithreading facility. In
addition, the macros and the functions that support them enforce the RPC runt-
ime’s idea of correct behavior regarding mutex locks. The macros also provide
optional debugging support targeted at uncovering a variety of lock-related prob-
lems. Since efficient use of mutex locking (along with, of course, fundamentally
inexpensive mutex primitives) is important to RPC performance, the RPC mutex
macros provide a variety of statistics gathering instrumentation as well.
The RPC runtime library implements a two-tiered hierarchy of mutex locks, con-
sisting of:
• A coarse-grained global mutex (rpc_g_global_mutex) useful for protecting

global data structures. This mutex is typically used to protect memory alloca-
tion operations, as well as various queues and lists.

• A series of finer-grained mutexes defined by individual services.
Locks must be taken in order (one cannot acquire the global mutex while holding
one of the finer-grained ones without causing deadlock), so the order in which
locks are acquired is important. And, since no thread ever intentionally yields the
processor while holding a mutex, careful consideration must be given to the granu-
larity of a mutex as well as to the length of time it is held. The use of mutex locks
in the user-space runtime code reflects not only these constraints, but also the
desirability of having the runtime’s locking behavior behave in appropriate ways
in a Unix kernel context.
One result of this locking strategy is that functions may need to do various explicit
lock/unlock/relock operations that preserve the required locking hierarchy at the
expense of (at least briefly) unlocking critical data in a way that may leave it vul-
nerable to asynchronous activity. The runtime uses a reference counting scheme,
which we describe on page 6-18, to provide a means of ensuring that even when
unlocked, data structures of interest will not be freed. However, it is important that
all functions that must release and reacquire a lock validate the state of the refer-
enced data after reacquiring the lock but before proceeding further. (The function
rpc__dg_execute_call, in the file dgexec.c provides a good example of
how to do this.)

Mutex and Condition Variable Data Structures
The two private datatypes associated with this facility are based, in this implemen-
tation, on the mutex and condition variable data structures defined by the DCE
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threads package. Table 3-1 illustrates the fundamental DCE RPC mutex and condi-
tion variable data structures. Fields in shaded areas are only present if
RPC_MUTEX_DEBUG has been defined at compile time.

Table 3-1: rpc_mutex_t data structure

rpc_mutex_t {

m /* a pthread_mutex_t, as defined in
pthread.h */

is_locked /* true iff this mutex is locked */

owner /* pthread_id of the thread that locked
this mutex (valid iff locked) */

locker_file /* name of src file in which this mutex was
most recently locked */

locker_line /* line number where above lock was
acquired */

stats /* statistics block for this mutex */

}
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Condition variables employ a similar pairing of the condition variable itself and an

associated per-condition-variable statistics block, as illustrated in Table 3-3 and
Table 3-4.

 If RPC_MUTEX_DEBUG or RPC_MUTEX_STATS has been defined at compile time,
per-mutex statistics can be gathered on:
• redundant lock requests (requests to lock an already-locked mutex)
• total RPC_MUTEX_LOCK operations

Table 3-2: rpc_mutex_stats_t data structure

rpc_mutex_stats_t {

busy /* total requests to lock this mutex when
it was already locked */

lock /* total locks taken */

try_locks /* total try_lock operations attempted */

unlocks /* total unlock operations */

init /* total inits on this mutex */

lock_assert /* total lock_assert operations on this
mutex */

unlock_assert /* and vice-versa */

}

Table 3-3: rpc_cond_t data structure

rpc_cond_t {

c /* a pthread condition variable, defined in
pthread.h */

mp /* and its associated mutex */

stats /* the statistics block for this condition
variable */

}

Table 3-4: rpc_cond_stats_t data structure

rpc_cond_stats_t

init /* total inits */

delete /* total deletes */

wait /* total waits */

signals /* total signals + broadcasts */

}
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• total RPC_MUTEX_TRY_LOCK operations attempted
• total RPC_MUTEX_UNLOCK operations
• total RPC_MUTEX_INIT operations
• total RPC_MUTEX_DELETE operations
• total RPC_MUTEX_LOCK_ASSERT operations

Mutex Service Internal Operations
All operations on mutexes and condition variables are normally invoked via the
following macros, which arrange for the collection of statistics and enforce various
rules regarding mutex and condition variable use.
RPC_MUTEX_INIT

initializes an rpc_mutex_t and, optionally, the associated statis-
tics and debug information

RPC_MUTEX_DELETE
Deletes a mutex

RPC_MUTEX_LOCK
Locks a mutex

RPC_MUTEX_TRY_LOCK
Executes the (nonblocking) try_lock operation

RPC_MUTEX_UNLOCK
Unlocks a mutex

RPC_MUTEX_LOCK_ASSERT
Asserts that a mutex is locked

RPC_MUTEX_UNLOCK_ASSERT
Asserts that a mutex is not locked

RPC_COND_INIT
Initializes a condition variable

RPC_COND_DELETE
Deletes a condition variable

RPC_COND_WAIT
Wrapper for pthread_cond_wait (see pthread.c).

RPC_COND_TIMED_WAIT
Wrapper for pthread_cond_timed_wait

RPC_COND_SIGNAL
Wrapper for pthread_cond_signal

The underlying routines that support these macros are implemented in
rpcmutex.c (as well as in the DCE threads package) and are largely self-explan-
atory. They are never called directly.
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List Services
The RPC runtime library maintains numerous lists, and provides a common list
management mechanism used by several runtime components, principally the
Name Service Interface and the connection-oriented RPC protocol service. The
files rpclist.h and rpclist.c implement this facility using a lookaside
model, which can, it is hoped, be implemented in ways that take advantage of
memory-management optimizations on a variety of architectures to reduce the
number of instances in which list-item memory must be allocated/freed. These lists
are doubly-linked. The list head includes a pointer to the first and last elements in
the list. New list elements are typically added to the end of a list, since that is the
most efficient add operation. When addition of a new element would cause a list to
exceed its maximum allowable size, the element is returned to heap storage
instead.
The file rpclist.h defines the structure of a list element and a list, and provides
macros used for manipulating these lists. The underlying list management routines
in rpclist.c should not, as a rule, be called directly.
Structures kept on lists accessed via the RPC_LIST* macros may live on only one
list at a time. A structure is said to be “on” one of these lists by virtue of being
linked to the list through the structure’s first member. This member, which must be
first and is often named “link,” is defined as an rpc_list_t, which has two
fields: next and last. The list manipulation macros cast this member to a pointer,
then perform list operations by referencing through the rpc_list_t’s next and
last structure elements. Enqueuing a given structure on a second list would over-
write these fields, effectively removing the structure from the first list. Figure 3-1
illustrates this relationship.
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Figure 3-1: RPC List Organization

UUID Services
Not discussed in this document.

Memory Object Services
The files rpcmem.c and rpcmem.h provide the basis for a generalized memory-
management facility for data structures used by the RPC runtime library. This
facility defines a number of RPC “memory object” datatypes and supplies an
upper bound to the number of objects so defined.
The fundamental RPC memory management model is defined at compile time as
either in-line or out-of-line. Out-of-line is the default. Memory allocation, reallo-
cation, and deallocation operations have been wrapped in macros (RPC_MEM_AL-
LOC, RPC_MEM_FREE, RPC_MEM_REALLOC) that, in addition to performing the
indicated operations, allow the RPC runtime library to maintain per-type statistics
on:
• number of these objects currently allocated
• total number of these objects allocated since RPC runtime initialization.
• total number of allocation requests denied (attempt returned ENOMEM) for this

type since RPC runtime initialization
• largest extent of memory ever allocated for any object of this type.
Creation of new types for which storage will need to be allocated will require add-
ing the definition to the list of #defines in rpcmem.h.

struct item {
link
data
cruft
junk
}

struct item {
link
data
cruft
junk
}

item->link.next
item->link.last

item->link.next
item->link.last

rpc_list_t list_of_items

item 1

item 2

list_head
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Memory allocation requests can be specified as blocking or non-blocking. It’s
important, though, to note that a blocking allocation request (one specifying
RPC_MEM_WAITOK) made by a process holding a mutex can result in deadlock if
the requestor yields the processor.

Clock and Timer Services
The request/response nature of the DCE RPC protocol requires that the runtime
library be able to order events in time, and to have a way of knowing how long it
has been since something happened, or how long it will be until something should
happen (or happen again). Without such abilities, it would be impossible to tell, for
example, whether a remote call was making timely progress toward completion, or
whether attempts by a client to contact a server had gone on “long enough” to war-
rant another course of action. In addition, like many other complex systems, the
RPC runtime library needs to perform periodic tasks such as garbage collection.
The RPC runtime’s clock and timer services, implemented in the files
rpcclock.[ch] and rpctimer.[ch] provide mechanisms for handling all of
these chores.
The clock service provides routines that:
• maintain a global “wall clock” time based on the system clock
• compensate for adjustments to system time that might otherwise affect the

expected monotonicity of the clock service’s timestamps
• return a monotonically-increasing timestamp used in various ways, primarily

by the protocol services
• determine whether a particular timestamp has aged by a given interval
• determine whether a particular timestamp has expired relative to the current

wall clock time maintained by the operating system
The timer service is the primary consumer of the clock services, and is responsible
for all periodic operations within the RPC runtime. The basic operations of the
timer service can be summarized as follows:
• Periodic task information is maintained as a singly-linked list of

rpc_timer_t structures. Structures on the list are ordered by “trigger time,”
where trigger time is an rpc_clock_t value representing the time at which a
“timer routine” associated with the structure is to be run.

• A timer thread, kicked off at runtime initialization, periodically wakes up and
begins a sequential examination of the tasks (rpc_timer_t structures) on the
timer chain. If a task’s trigger time has arrived (or has passed), the timer thread
runs the associated routine. Once this traversal encounters a structure with a
trigger time that is “in the future,” the timer thread stores that trigger time in a
global variable and goes to sleep until then.

In addition, the timer service provides the means to register and unregister a peri-
odic routine (add it to or remove it from the list), and to make in-place adjustments
to a registered routine. Every call registers such a routine as part of the call startup
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process. These routines typically handle such chores as client-to-server “ping”
messages, retransmission, and the decision to terminate a call when the one end or
the other proves to be unreachable.

RPC Timer Service Data Structures
There is only one fundamental data structure associated with timer (and clock) ser-
vices. Table 3-5 illustrates and describes the fields of this structure, the
rpc_timer_t.

Figure 3-2 illustrates how these structures are linked together to form the timer
queue. All operations that change the state of the timer queue are protected by the
timer mutex (a second-level mutex), so that timer routine registrations and unregis-
trations can only take place while the timer thread is asleep, and are blocked while
the timer queue is being serviced. The timer queue has an associated condition
variable.

Table 3-5: rpc_timer_t structure

rpc_timer_t {

*next /* pointer to the next rpc_timer_t in the
timer queue */

trigger /* next trigger time (rpc_clock_t) when
this event should occur */

frequency /* frequency (rpc_clock_t) with which this
event should occur */

proc /* service routine associated with this
event */

parg /* argument passed to service routine */

}



Common Services Revised 7/27/93

3-10 Copyright  1993 Open Software Foundation

Figure 3-2: The timer thread and timer queue.

RPC Clock and Timer Service Internal Operations
Clock and timer service operations can be grouped into logical components that:
• establish and manage the RPC runtime’s idea of wall clock time
• manage the timer queue by enqueuing, dequeuing, and making in-place adjust-

ments to (rpc_timer_t) queue elements
• execute the periodic functions associated with individual queue elements
• start and stop the timer thread
Figure 3-3 illustrates the relationship of these functional groups.

rpc_timer_t {
*next
trigger
frequency
proc
parg
}

rpc_timer_t {
*next
trigger
frequency
proc
parg
}

rpc_timer_t {
*next
trigger
frequency
proc
parg
}

rpc_timer_t {
*next
trigger
frequency
proc
parg
}

head

tail
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Figure 3-3: RPC Clock and Timer Operations

Establishing and Managing Wall Clock Time
The clock service maintains a global notion of the current system time,
rpc_g_clock_unix_current. On Unix systems, this value is established by
calling gettimeofday during RPC runtime initialization, and is updated by the
internal routine rpc__clock_update at the beginning of each iteration of the
timer thread’s execution loop. The clock is updated using the “seconds” and
“microseconds” values returned by gettimeofday. The clock service shadows
the Unix clock time represented by rpc_g_clock_unix_current in another
global 32-bit value, rpc_g_clock_curr, which represents that time as an integer
number of “RPC clock ticks.”
These 200 millisecond ticks are deemed to be sufficiently fine-grained for the
interval-timing needs of the runtime. All of the runtime’s internal notions of cur-
rent and elapsed time are based on these RPC clock ticks. (Note that the RPC clock
ticks at a different rate than the CMA clock defined in threads/cma_timer.c.)
No internal timer or clock routine other than rpc__clock_update ever consults
the system time.
As a precaution against the problematic effects of having the system time change
in an anomalous way (e.g., being reset “backwards”), rpc__clock_update also
maintains a notion of clock skew, which it uses to adjust the global clock value
rpc_g_clock_unix_current when either of the following conditions occurs.
• The current system time (returned by gettimeofday) is earlier than the cur-

rent value of rpc_g_clock_unix_current.

rpc__timer_init

rpc__timer_set

rpc__timer_adjust
rpc__timer_clear

rpc__timer_callout

rpc__clock_stamp
rpc__clock_aged
rpc__clock_unix_expired

rpc__clock_update

rpc_g_timer_mutex
rpc_g_timer_cond

rpc_timer_high_trigger
rpc_timer_cur_trigger

timer_loop

ti d

rpc_g_clock_unix_current

rpc_g_clock_curr

rpc_timer_t {
*next
trigger
frequency
proc
parg
}

rpc_timer_t {
*next
trigger
frequency
proc
parg
}

rpc_timer_t {
*next
trigger
frequency
proc
parg
}

head

rpc_timer_prod

rpc_timer_set_int rpc_timer_t {
*next
trigger
frequency
proc
parg
}

rpc_timer_t {
*next
trigger
frequency
proc
parg
}
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• The current system time is more than 60 seconds later than the value of
rpc_g_unix_clock_current. The assumption in this case is that the timer
thread normally runs (and updates rpc_g_unix_clock_current) more
often than once per minute, so that any leading skew of this magnitude proba-
bly indicates that the system time has advanced unexpectedly between calls to
rpc__clock_update. The timer thread’s loop, which we will describe
shortly, includes a constant maximum wakeup interval of fifty seconds.

Managing the Timer Queue
The private function rpc__timer_set is the conduit between the runtime and
the timer queue. Runtime functions that need to register a timer routine call
rpc__timer set, passing it the address of the rpc_timer_t that will represent
the routine on the timer queue, the address of the actual routine (proc), and the
address of the argument with which that routine is to be called (parg).
The rpc__timer_set function is merely a wrapper that locks the queue’s mutex,
calls the internal (to the timer service) routine rpc__timer_set_int, then
unlocks the queue’s mutex. When rpc_timer_set_int registers a new routine,
it sets the value of the queue element’s trigger field to the sum of the current
time (the value of rpc_clock_curr) and the value of the element’s frequency
field.
Once the timer service has determined the routine’s trigger time, it enqueues the
routine (represented by its rpc_timer_t) on the timer queue in a position deter-
mined by the value of the routine’s trigger field. This will most often mean that
it is placed last, though that is not always the case. When rpc_timer_set_int
registers a routine with a trigger time that is earlier than the timer thread’s next
wakeup call, the timer thread is “prodded” into action by a call to
rpc__timer_prod.

The Timer Loop
The timer thread runs the routine timer_loop, which simply calls
rpc__clock_unix_update to update the wall clock, then runs the internal
rpc__timer_callout routine, which traverses the timer queue running those
routines whose trigger time has arrived. The timer thread’s schedule is determined
with the help of two internal variables, rpc_timer_high_trigger, which rep-
resents the latest trigger time for any routine on the timer queue, and
rpc_timer_cur_trigger, which represents the next trigger time at which the
timer thread will run. After each traversal of the timer queue, the thread goes to
sleep for an interval returned by rpc__timer_callout. This interval is com-
puted by subtracting rpc_clock_curr (the current wall clock time, in RPC clock
ticks) from rpc_timer_cur_trigger.
The timer thread always consults the stop_timer boolean upon awakening. All
higher-level shutdown routines set stop_timer to true, as does the timer service’s
fork handler, rpc__timer_fork_handler, that takes care of stopping the timer
thread in the prefork stage, then starting it up again in the postfork parent.
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Call Thread Services
As discussed on page 2-1 of this document, the RPC runtime library creates sev-
eral types of threads more or less upon initialization. We describe the network lis-
tener thread and the timer thread elsewhere in this chapter, and we cover threads
unique to the datagram-based and connection-based protocol services in the mate-
rial on those services. In this section, we talk about call threads — as the threads
that execute remote procedure calls are known. The files comcthd.h and com-
cthd.c implement a general facility for creating these threads, allocating them to
calls, and, when they are no longer needed, freeing the resources they consume.
The call thread facility was designed to work in user-space as well as kernel envi-
ronments. We only discuss the details of user-space operations here.
DCE RPC call thread services were designed to provide a default call thread mech-
anism that serves the needs of most applications without any special intervention
by the application developer. It also provides additional features that allow appli-
cations to exercise more control over thread-to-call allocation when that is neces-
sary.
The fundamental operations of the call thread services can be summarized as fol-
lows:
• Call threads are created at server start-up time. The max_calls_exec argu-

ment to rpc_server_listen normally determines the total number of call
threads available to execute that server’s manager routines.

• When a server starts up, a default pool of call threads is initialized and the
threads enter an “idle” state waiting on a thread-private condition variable.
Once a call thread has begun executing a call, it is said to be in the “active”
state. When an active thread has finished executing a call, it is normally
returned to the pool and marked idle.

• Each incoming call is allocated to an idle thread until there are no threads left
in the idle state. Subsequent incoming calls are queued in FIFO order.

• Several undocumented APIs allow applications to allocate “reserved” pools of
threads to handle critical operations, and to control how threads from those
pools are allocated to calls.

• When a server is shut down, call threads are stopped in an orderly way.
Stopped thread pools are periodically “reaped” to return resources to the sys-
tem.

The idea of reserved pools (and, to some extent, of thread pools themselves) was
arrived at in the course of tuning DCE RPC for the needs of the DCE Distributed
File System (DFS). While it is probably correct to say that there is a “default” case
in which no reserved pools are created and all threads are allocated from the
default pool, any DCE RPC runtime that is supporting the DFS will be using a
number of reserved pools as well. And, although the API that gives applications
access to reserved pools is not part of the DCE RPC AES at this writing, we
describe these operations here, since they are responsible for much of the complex-
ity inherent in the call thread service’s implementation.
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With this in mind, we discuss the mechanics of threads and thread pools in more
detail in the next section assuming a model in which one or more reserved pools
are in use.

Principal Call Thread Data Structures and Their Relationships
The call thread service defines three basic structural elements. Only two of them,
the cthread_elt_t (an individual call thread) and the cthread_pool_elt_t
(a thread pool descriptor) are needed in the case where only the default thread pool
is in use. Table 3-6 and Table 3-7 describe these structures.

Table 3-6: cthread_elt_t structure

cthread_elt_t {

thread_state /* 0=nonexistent, 1=idle, 2=active */

thread_id /* a pthread_t data type identifying this
call thread */

thread_cond /* this call thread’s private condition
variable */

*pool /* a pointer to the pool with which this
call thread is associated */

call_rep /* pointer to the call_rep that this thread
is executing */

}
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A third data structure, the cthread_queue_elt_t, provides a means of circum-
venting the rpc_list_t’s restriction on multiply-enqueued items (see page 3-6).
This circumvention is necessary to enable the call thread service to enqueue calls
for reserved pools on the default pool as well.

Table 3-7: cthread_pool_elt_t structure

cthread_pool_elt_t {

link /* rpc_list_t list of which we are a member
*/

n_threads /* the total number of threads in the pool
*/

n_idle /* the number of idle threads in the pool
*/

ctbl /* an array cthread_elt_t structures repre-
senting this pool’s threads */

idle_cthread /* pointer to a known-idle cthread */

n_queued /* number of calls currently on the pool’s
queue */

max_queued /* maximum queue depth */

call_queue  /* list of calls queued to this pool iff it
is a reserved pool */

free_queue  /* list of free cthread_queue_elts, used iff
this is a reserved pool */

stop /* true iff threads should stop when call
execution is complete */

queue_elt_alloc /* true iff this is a reserved pool and a
free_queue of queue_elt structures should
be allocated */

}

Table 3-8: cthread_queue_elt_t structure

cthread_queue_elt_t {

link /* rpc_list_t (always a cthread_pool_elt’s
free_queue or call_queue) of which we are a
member

*pool /* pointer to cthread_pool_elt_t describing
our pool */

call_rep /* call_rep we are executing */

}
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In addition, the rpc_call_rep_t defined in com.h includes a pointer to thread-
private data which is typically examined only by routines in comcthd.c, and
which provides an important link between the call rep and its executor thread.

Figure 3-4 illustrates these structures and their fundamental relationships for the
case where only a default pool exists.

Figure 3-4: Default Call Thread Relationships

Figure 3-5 illustrates the way these structures are used to connect the “default” and
“reserved” incarnations of a call rep.

Table 3-9: rpc_cthread_pvt_info structure

rpc_cthread_pvt_info_t {

0 /* needed to force alignment */

is_queued /* true iff this call is waiting in a
pool’s queue */

executor /* a protocol-specific call executor func-
tion (e.g. rpc__dg_execute_call) */

optargs /* the executor function’s arguments */

thread_h /* thread handle of thread executing this
call (true iff !is_queued) */

qelt /* pointer to associated qelt structure
(iff this call_rep is supposed to be exe-
cuted by a reserved pool thread) */

0 /* needed to force alignment */

}

cthread_pool_elt_t
link
n_threads
n_idle
ctbl
idle_cthread
n_queued
max_queued
call_queue
free_queue
stop
queue_elt_alloc

cthread_elt_t
thread_state
thread_id
thread_cond
*pool
call_rep

call thread table

default thread pool

rpc_call_rep_t
…
…
…
…
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Figure 3-5: Reserved Pool Call Thread Relationships

 Call Thread Service Internal Operations
The call thread service has three major jobs:
• It creates pools of threads at server start-up time.
• It assigns these threads to incoming calls, in the proper order, and from the

proper pool.
• It stops pools of threads at the appropriate time (e.g., server shutdown) and in

an orderly way, and after that, it reclaims the system resources they had con-
sumed.

Figure 3-6 illustrates the internal operations of the call thread service. We’ve
drawn boxes around functional groups, and set the externally-visible entrypoints in
bold type.

…

cthread_pool_elt_t
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n_threads
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ctbl
idle_cthread
n_queued
max_queued
call_queue
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cthread_elt_t
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thread_id
thread_cond
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call_rep

call thread table
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rpc_cthread_pvt_info_t
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is_queued
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optargs
thread_h
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0

cthread_queue_elt_t
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*pool
call_rep
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rpc_call_rep_t
…

…
u.server.cthread
…



Common Services Revised 7/27/93

3-18 Copyright  1993 Open Software Foundation

Figure 3-6: Call Thread Services Internal Operations

Creating Thread Pools
When a server starts up, the call thread service creates pools of threads in an effort
to incur (what would otherwise be per-call) thread-creation overhead at a time
when no calls have been accepted for execution. The number of pools, number of
threads in a pool, and the number of calls that will be queued to a pool once queu-
ing begins are normally set at server start-up, but can be adjusted dynamically via
undocumented APIs.
If no reserved pools have been created, then a server’s call thread universe is repre-
sented by a single pool element representing the default pool. This element
includes pointers to a call_queue of call reps awaiting execution and a
free_queue of call reps that have been dequeued. It also includes a pointer to a
known idle thread if one exists, and to an rpc_mem_cthread_ctbl object
(named ctbl), which is an array of cthread_elts, one for each thread in the
pool. The number of threads in the pool (n_threads) is derived from the
max_calls_exec argument to rpc_server_listen. Queue depth
(max_queued) for the pool is normally determined by multiplying n_threads by
a constant (currently 8).
Thread pools are created in two steps. First, cthread_pool_alloc initializes a
cthread pool descriptor (cthread_pool_elt_p_t), setting the values of
n_threads and max_queued based on the max_calls_exec argument of

rpc__cthread_init

rpc__cthread_start_all

cthread_pool_alloc

cthread_pool_set_threadcnt

cthread_pool_start

cthread_create(,,cthread_call_executor,,)

cthread_pool_dequeue_first

cthread_call_dequeue

rpc_cthread_dequeue

rpc_cthread_stop_all

cthread_pool_free

cthread_pool_stop

rpc_server_create_thread_pool()

rpc_server_set_thread_qlen()

rpc_server_set_thread_pool_fn()

rpc_server_free_thread_pool()

rpc__cthread_invoke_null(call_rep, executor)

cthread_reaper

cthread_pool_assign_thread

cthread_pool_queue_call

RPC_MUTEX_INIT(cthread_mutex)
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rpc_server_listen. An application may specify a different queue depth by
calling the rpc_server_set_thread_pool_qlen function. If it does so, that
depth will also be used for the default and reserved pools.
If an application creates reserved pools, the values of n_threads and
max_queued for those pools are derived from those of the default pool. A pool’s
threadcount can be modified using cthread_pool_set_threadcount, but
only if no threads in the pool are running (i. e., the pool has either not yet been acti-
vated via cthread_pool_start, or the pool has been temporarily deactivated
by cthread_pool_stop).
Once the pool has been allocated, cthread_pool_start kicks off the pool’s
threads by calling cthread_create to create n_threads threads running
cthread_call_executor as the thread’s “startroutine.” This routine simply
updates the information in the thread’s parent cthread_pool_elt_t, disables
general cancellability in the thread, and arranges for the thread to wait on a condi-
tion variable that will indicate when there is a call for the thread to execute.
Call threads are always created with general cancellability disabled. Just before
executing a queued call, the thread invokes the RPC_CALL_LOCK macro to lock
the call rep. It also increments the call’s reference count (see page 6-18). The call
reference and lock are handed off to a protocol-specific executor function by the
thread, which will eventually relinquish them. We discuss the datagram RPC call
executor function on page 7-30.
Assigning a Thread to a Call
The internal routine rpc__cthread_invoke_null is the main conduit between
the call thread service and the rest of the runtime. Called by such communications
service routines as receive_dispatch and rpc__dg_do_request, it handles
the actual work of filling in the executor and args fields of the call rep’s
thread-private data, as well as the call_rep field of the pointed-at cthread, after
which it toggles that thread’s condition variable so the thread will wake up and
begin executing the call. If there are no idle cthreads available, this routine
attempts to queue the call.
The call thread service assigns threads to calls using the following rules.
• If any reserved pools have been created, the call thread service attempts to

assign the call to an idle thread from the appropriate reserved pool. Applica-
tions may register an application-specific pool lookup function that the runtime
will use for assigning threads form a particular pool to calls with, for example,
specific interface or object UUIDs.

• If there are no idle threads in the appropriate reserved pool, the call thread ser-
vice attempts to assign the call to a free thread from the default pool.

• If there are no idle threads in the default pool either, the call gets queued simul-
taneously to the default and reserved pools.

This queueing strategy maximizes a call’s chances of running (by getting assigned
to an idle thread) immediately upon receipt. The call thread service guarantees to
dequeue calls for a given interface in the order in which they were received, but
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makes no guarantees about which thread in a pool (or, in the absence of a pool
lookup function, which pool) will execute a call. When a pool lookup function is
supplied, it will be used to determine the thread pool from which the call thread is
allocated. Since all threads are created equal, this should not matter. However,
since every call that is queued to the default queue increments the n_queued field
of that cthread_pool_elt_t. Calls queued to a reserved pool increment that
pool’s n_queued field as well as that of the default pool. As a result of this logic,
there can be more than max_queued calls in the default pool’s queue. Since none
of the multiply-enqueued calls execute more than once, this anomaly has no practi-
cal effect.
When calls are dequeued, they are always fetched from the default queue first. The
“matching” reserved pool queue element is then found — based on the qelt field
of the call rep’s thread-private data — and dequeued.

Figure 3-7: The Call Thread Queue

Calls queued for the default pool are represented as actual call reps, as shown in
Figure 3-7. (For more detail on call reps in general, see Chapter 6).
Calls queued for a reserved pool are represented by the cthread_queue_elt
structures described above. Initially, n_queued of these elements reside on the
pool’s free_queue. As calls are queued to the reserved pool, elements are
removed from the head of the free_queue and appended to the tail of the
call_queue. When a call is executed, its (freed-up) cthread_queue_elt is
returned to the free_queue. All this is detailed in Figure 3-8.

cthread_pool_elt_t
link
n_threads
n_idle
ctbl
idle_cthread
n_queued
max_queued
call_queue
free_queue
stop
queue_elt_alloc

rpc_call_rep_t
…
…
…
…



Revised 7/27/93 Common Services

Copyright  1993 Open Software Foundation 3-21

Figure 3-8: Call Thread Queue Relationships

Shutting Down Thread Pools
A request to stop a server translates, eventually, to a call to the routine
cthread_pool_stop, which has a “wait flag” argument that specifies whether
or not the threads in the pool should finish executing. If this flag is not set,
cthread_pool_stop first sets the pool’s stop field to true, then toggles each
thread’s condition variable to make sure that even blocked (waiting) threads will
notice the change. Otherwise, cthread_pool_stop disables async cancels for
the running threads, then awaits normal termination.
As a means of avoiding problems induced by simultaneous shutdown and start-up
requests, the call thread service maintains a private boolean,
cthread_invoke_enabled, that is set to false whenever a server is shutting
down. All routines that are capable of allocating threads from a pool check this
value before doing so.
Once all threads in a pool have stopped, cthread_pool_stop frees whatever
resources the pool had been consuming.
The Call Thread Reaper
The call thread service implements a simpleminded reaper task that has the respon-
sibility of reclaiming resources allocated to thread pools that have become idle.
Periodically (every 36 seconds, computed as 3*(60*rpc_clock_sec)), the
reaper thread wakes up and traverses a “reaper queue” of thread pool element
pointers. For every pool in the list, the reaper examines each thread. Pools in which
all of the threads have a status of “no thread” are marked for deletion, then freed.

The Network Listener Thread
Not discussed in this document.
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Common Binding Services
The RPC runtime’s common binding services are responsible for establishing and
maintaining information about the ties that bind clients and servers to each other.
Although much binding information is protocol-specific, and DCE RPC protocol
services typically define their own binding representations, all RPC bindings have
certain common features. These common features are supported by the common
binding services, and are maintained in a data structure called an
rpc_binding_rep_t (“binding rep” for short), defined in com.h. A pointer to
one of these structures is usually the first element of any protocol-specific binding
information. All binding handles used in client/server communications point to
one of these structures.
Binding service routines come in public and private flavors, and in common and
protocol-specific flavors as well. The common binding services, which are imple-
mented in the file combind.c, are responsible for initializing and manipulating
those fields of a binding rep that are common to all protocol families. In this sec-
tion, we’ll concentrate on the actions and interactions of these routines. We’ll
cover protocol-specific manipulations of the binding rep in the material on the pro-
tocol services.
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RPC Binding Service Data Structures
Table 3-10 illustrates and describes the fields of an rpc_binding_rep_t. Fields
in the shaded area are meaningful only to the client instance, and will return
invalid (and therefore problematic) data if examined by a server stub.

More detailed explanations of the fields and how they are initialized follow:
link an rpc_list_t that furnishes this binding_rep’s connection to a

list of bindings maintained for possible re-use by the connection-
oriented protocol service.

Table 3-10: rpc_binding_rep_t structure

rpc_binding_rep_t {

link /* list of which we are a member */

protocol_id /* protocol we are using */

refcnt /* # of references held to this
binding_rep, for concurrent/shared
handles */

obj /* object UUID */

rpc_addr /* pointer to the rpc address struc-
ture associated with this binding */

is_server /* true if this is a server-side bind-
ing */

addr_is_dynamic /* true if rpc_addr (above) is not
well-known */

auth_info /* auth_info pointer */

fork_count /* so we can dispose of this handle in
a postfork child */

bound_server_instance /* true if we have actually connected
on this binding */

addr_has_endpoint /* true iff we have obtained an actual
communications endpoint for this
address */

timeout /* rpc_default_timeout value for this
binding */

calls_in_progress /* calls started using this binding */

ns_specific /* pointer to nameservice-specific
data */

call_timeout_time /* how many rpc_clock_seconds until
this call times out */

}
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protocol_id
the protocol over which communications on this binding will take
place, represented by an rpc_protocol_id_t (defined in
com.h), initialized by rpc_binding_alloc.

refcnt Number of references held to this binding rep. This field is initial-
ized by rpc_binding_alloc to a value of 1. That value will be
incremented for every call to rpc_binding_handle_copy
(which calls RPC_BINDING_REFERENCE to do the actual work of
bumping the reference count). Calls to free a binding decrement
refcnt by way of the RPC_BINDING_RELEASE macro. For more
on reference counts, see page 6-18.

obj Object UUID associated with this binding.
rpc_addr An rpc_addr_p_t representing the address of the client (or

server) half of this binding. It is initialized to NULL if the binding
refers to the local host. Otherwise, it is initialized to a protocol-spe-
cific value via a call to the protocol service specified in
protocol_id.

is_server True if this is a server instance. Initialized by both the
rpc_binding_alloc and rpc_binding_copy routines. Inter-
nal operations that need to inquire whether a binding refers to a cli-
ent or a server instance call through the accessor macros
RPC_BINDING_IS_SERVER and RPC_BINDING_IS_CLIENT,
which simply examine this field and return the appropriate (true or
false) value.

addr_is_dynamic
Endpoints can be either dynamically assigned by the endpoint map-
per (described in Chapter 5) or supplied in “well-known” form by
the application. Since the expectation is that the former case will be
the most common one, this field is initialized true in all cases
except the one in which the binding rep is created through a call to
rpc_binding_from_string_binding.

auth_info Initialized to NULL, filled in later by a protocol-specific authenti-
cation setup function

fork_count Initialized to rpc_g_fork_count by rpc_binding_alloc. The
RPC runtime maintains a per-process global rpc_g_fork_count,
which is incremented every time a client process successfully calls
fork to create a child. (Attempts by servers to fork are rejected as
illegal.)
Since all RPC state is effectively vaporized across a fork, any post-
fork reference held only by the application to state created by the
runtime must not end up stranded. The private binding service rou-
tine rpc_binding_cross_fork accomplishes this by initializ-
ing, prefork, the binding rep’s fork_count field to the value in the
global rpc_g_fork_count. After the fork, the fork_count field of
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the binding rep is compared against the global value
rpc_g_fork_count and, if they’re not equal, invoking a proto-
col-specific routine to free the handle and its associated state in the
child. In most cases, the runtime handles this by calling the macro
RPC_BINDING_VALIDATE, which we describe in the next subsec-
tion.)

bound_server_instance
Initialized false. Set to true by rpc__dg_call_transceive once
this handle has actually been used to communicate with a server of
the appropriate type (i.e., to which subsequent calls on this binding
should go). Used to support call serialization, and is part of the
mechanism that ensures all calls on a given binding handle bind to
the same server instance.

addr_has_endpoint
True iff the rpc_addr field includes a communications endpoint
as delivered by the endpoint mapper. This field is used by the data-
gram protocol service’s call forwarding mechanism (described on
page 5-23). Note that if bound_server_instance is true, then
addr_has_endpoint will also be true (but not vice-versa).

timeout This is the call timeout “knob” setting for this call. It is initialized to
0 by rpc_binding_alloc.

calls_in_progress
This field provides a form of locking for the binding rep that pre-
vents inappropriate API operations (e.g.
rpc_binding_set_object) while a call on this binding is in
progress. Initialized to 0. Incremented by
RPC_BINDING_CALL_START for every call_start on this binding.
Decremented by RPC_BINDING_CALL_END for every call_end on
this binding.

ns_specific
Nameservice-specific data, as described in Chapter 4.

call_timeout_time
The call’s timeout time as established by
rpc_mgmt_set_call_timeout.

Common Binding Services Internal Operations
The binding service provides a number of internal functions and macros that:
• allocate, initialize, and validate a binding rep
• examine and set various fields of a binding rep after it is initialized
• manage validation, parsing, and decomposition of string bindings
• free unused binding rep resources.
Figure 3-9 illustrates the common binding service’s internal operations. Note that
many of the operations described here call the protocol service named in the bind-



Common Services Revised 7/27/93

3-26 Copyright  1993 Open Software Foundation

ing rep’s protocol_id field to carry out tasks that are protocol- or NAF-spe-
cific. These operations are handled through those services’ entrypoint vectors, as
described on page 2-1.

Figure 3-9: RPC Common Binding Services

Allocating and Initializing a Binding
The private routine rpc__binding_alloc is the base binding rep allocation rou-
tine. It, in conjunction with the protocol service specified in the binding’s
protocol_id field, handles all memory allocation and data initialization chores
related to establishing a binding. The public routines rpc_binding_copy and
rpc_binding_from_string_binding rely on rpc__binding_alloc to do
most of their work.
Three macros are defined in comp.h for the convenience of internal callers that
need to check a bindings validity before use, or that need to determine if a binding
is a client or server instance
RPC_BINDING_VALIDATE makes sure that the binding rep is non-NULL and that
its protocol_id field is within the range of supported protocol ids. It also com-
pares the binding_rep’s fork_count field with the global fork count and, if
they’re not equal, calls rpc_binding_cross_fork to fix up binding state in the
child.
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RPC_BINDING_VALIDATE_SERVER and RPC_BINDING_VALIDATE_CLIENT
simply combine the RPC_BINDING_VALIDATE and RPC_BINDING_IS_CLIENT
(or _IS_SERVER) macros in a sequence commonly used by runtime functions.
All critical operations on a binding rep are carried out under the protection of the
RPC global mutex, and using the RPC global condition variable to signal any
threads that may be waiting to access binding rep data. These operations are
wrapped in the following macros, which are defined in com.h.
RPC_BINDING_COND_INIT
RPC_BINDING_COND_DELETE
RPC_BINDING_COND_WAIT
RPC_BINDING_COND_TIMED_WAIT
RPC_BINDING_COND_BROADCAST

Operations on Individual Fields of Binding Data
rpc_binding_set_object, rpc_binding_inq_object

These public routines, which are also used internally by the end-
point mapper, copy a (new) object UUID into the binding rep’s
objuuid field or return the contents thereof.

rpc_binding_reset
This public routine sets bound_server_instance false, then
calls the naf epv’s addr_set_endpoint function with a zero-
length string to remove the binding’s endpoint. Once this has been
accomplished, it sets addr_has_endpoint false and calls the
naf epv’s binding_reset function to signal the protocol service
that the binding has changed. RPC_BINDING_REFERENCE incre-
ments the refcnt field of a binding rep.

RPC_BINDING_CALL_START
increments the calls_in_progress field

RPC_BINDING_CALL_END
decrements the calls_in_progress field

rpc_binding_inq_client
Given a server binding handle, this public routine returns the asso-
ciated client binding handle by calling through the protocol service
epv. It is also called by the protocol services’ liveness-monitoring
functions.

rpc_binding_handle_copy
Calls through the RPC_BINDING_REFERENCE macro to create a
copy of (i.e., an additional reference to) an extant binding handle.
by bumping the binding rep’s refcnt field.

String Binding Operations
String bindings are the only bindings not supplied by the name service. Given their
fallible human origins, the binding services must take pains to validate their con-
tents before actually using the data they contain in a binding rep.
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The public routines rpc_binding_to_string_binding
rpc_binding_from_string_binding rpc_string_binding_parse, and
rpc_string_binding_compose manage the composition, decomposition, and
validation of string bindings. All are conceptually straightforward. Figure 3-10
describes their fundamental interactions.

Figure 3-10: String Binding Operations

Miscellaneous Public and Private Common Binding Routines
rpc_binding_handle_equal

This routine is a place-holder for anticipated future functionality.
rpc_binding_server_to_client

This public routine provides a compatibility wrapper for
rpc_binding_server_from_client.

rpc_binding_server_from_client
Given a server instance of a binding rep, this routine creates a client
version of it.

rpc__binding_cross_fork
This private routine verifies that a process holding a reference to a
binding rep has forked, then calls into the appropriate naf epv oper-
ation to free any protocol-specific state that should not survive the
fork. See the description of binding_rep->fork_count above.

rpc__binding_inq_sockaddr
This is a private routine used only in kernel RPC.

Freeing Binding Resources
All binding deallocations, internally- and externally-generated, call through
RPC_BINDING_RELEASE, which handles the required adjustments to the binding
rep’s reference count.
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Externally-generated requests to free a binding arrive via the public function
rpc_binding_free. Figure 3-9 (page 3-26) illustrates the relationship of this
function to the private macro RPC_BINDING_RELEASE and the internal routine
rpc__binding_free. Since much of a binding rep’s contents is protocol- or
nameservice-specific, rpc__binding_free, which does the real work of freeing
binding resources, calls through the protocol and naf epvs to free those parts of the
binding that only they understand, and invokes the RPC runtime’s global “name-
service free” function to deal with the ns_specific field
A fourth routine, rpc_binding_vector_free, is called primarily by the name
service’s import, export, and lookup routines. This function simply traverses a vec-
tor of binding reps and calls rpc_binding_free on each non-NULL entry, then
frees the vector memory.

Common Socket Services
The runtime’s common socket services are primarily used by the protocol engines
themselves, and take the form of a layer over the 4.3BSD and 4.4BSD socket IPC
mechanism that provides:
• isolation of non-portable socket traits
• a standardized access model to the transport layer for runtime functions that

send and receive messages over sockets, or that simply need to determine what
sort of transport services the host OS supports

• canonical error handling that fits socket errors into the overall RPC error
reporting mechanism.

• fast-path macros for time-critical operations
• a suitable abstraction for implementation of socket operations in a Unix kernel

(this provision was, in fact, the primary motivator for development of this
facility.)

The common socket services comprise the private routines and macros illustrated
in Figure 3-11, all of which are found in comsoc_bsd[ch]. An implementation
of DCE RPC that needed to run over a fundamentally different socket abstraction
would likely require major rewriting of these routines.
Much of the implementation detail in these services concerns portability across
4BSD variants, as well as across known (or conceivable) divergences among
implementations of a given BSD release’s socket library. Individual routines’
implementations are straightforward and/or self-explanatory to anyone with a
good understanding of the underlying Berkeley socket architecture and its various
implementation quirks
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Figure 3-11: Common Socket Services

Network Address Family Services
The RPC runtime’s network address family (naf) services provide a generic
mechanism for allocating, manipulating, and freeing network addresses, endpoints,
and socket descriptors. All three of these are somewhat interchangeable, on the
conceptual level at least, and the naf services allow at least some translations from
one to another. The naf services are also responsible for maintaining necessary
associations between protocol sequences, protocols, and network addresses.
Despite the fact that, today, there is typically a one-to-one relationship between
protocol family, address family, and socket type, the expectation that this will be
less of a norm in the future motivated implementation of this layer.
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which describes a single Network Address Family Extension. Table 3-11 illus-
trates this structure.

In addition, the naf service routines make extensive use of the rpc_addr_p_t,
the base RPC address structure, illustrated in Table 3-12. Network address data
structures vary, so the size of this structure can never be known at compile time,
which is why it always appears as a pointer type.

Common naf Services Internal Operations
These private routines, all of which are implemented in comnaf.[ch], are used
internally by the ep (endpoint), twr (tower) and net (network) services, as well as
by the protocol services.
Nearly all of these routines simply call in through the naf entrypoint vector (using
the model described in Chapter 2) to a protocol-specific routine that operates
directly on network addresses and/or socket descriptors.

Table 3-11: rpc_naf_id_elt_t structure

rpc_naf_id_elt_t {

naf_init /* the address of the initialization rou-
tine for this naf. This routine will be
called by rpc__init. */

naf_id /* A constant identifier (e.g.,
rpc_c_naf_id_ip) representing this network
address family */

net_if_id A constant identifier (e.g.,
rpc_c_network_if_id_dgram) for the network
interface type used in the NAF initializa-
tion routine (when determining if this NAF
is supported).

naf_epv /* the naf entry point vector, defined in
comnaf.h */

}

Table 3-12: rpc_addr_p_t structure

* rpc_addr_p_t {

rpc_protseq_id /* an rpc_protseq_id_t element describing
the protocol sequence associated with this
address */

len /* the length of the address (sa) */

sa /* an opaque pointer to the actual socket
*/

}
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Most of the called (naf) routines take an endpoint and/or an rpc_addr_p_t as
arguments and operate on one or both. We’ll describe details of the low-level rou-
tines themselves in conjunction with our descriptions of the protocol services. In
this section, we only describe the common portion of the naf services.
Note that, even though there are routines that nominally get and set things like max
TSDU/TPDU, they exist today mostly in anticipation of future low-level (in the
network layer) support for this kind of thing. Today, the actual naf-specific rou-
tines typically return some compiled-in constant based on the protocol sequence
being used.

Common Interface Registry Services
An interface, in the terminology of DCE RPC, is a collection of remotely-callable
operations. All DCE RPC servers register one or more interfaces using the com-
mon interface registry services described in this section. These services include
routines that:
• register an interface
• unregister an interface
• look up an interface given its type UUID
• support discrimination, by clients, among versions of an interface using major

and minor version numbers
These services have to have several operational characteristics if they are going to
meet the needs of large-scale distributed systems, systems in which servers support
many complex interfaces and service the needs of perhaps hundreds of clients
each. Chief among these characteristics are efficient interface lookup, the ability to
support multiple versions of an interface (e.g., for backward compatibility), and a
flexible means of representing interfaces with varying numbers of operations. In
addition, the various interfaces that the RPC runtime creates and registers for its
own use must be protected from inadvertent tampering.
The services described here are conceptually linked with (and operationally simi-
lar to) the object UUID services described on page 3-39. Together, these facilities
comprise the basis of DCE RPC’s presentation of service descriptions to clients.

Terminology
This document does not describe the default_mepv and if_rep
in detail.
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Interface Registry Data Structures
The interface registry services create and maintain a set of linked lists of the struc-
tures described in Table 3-13 and Table 3-14. Both of these structures are defined

in the file comif.c.
In addition to these structures, the common interface registry code references the
base interface representation structure and its constituents, which are defined in the
file sys_idl/stubbase.h. Table 3-15 describes the rpc_if_rep_t. The syn-

Table 3-13: rpc_if_rgy_entry_t structure

rpc_if_rgy_entry_t {

link /* list of which we are a member */

if_spec /* pointer to an interface rep */

default_mepv /* default manager epv */

copied_mepv /* true iff the default_mepv was copied at
registration time */

internal /* true if this is an internal interface,
should not be unregistered via wildcard
operations */

type_info_list /* list of rpc_if_type_info_t structures */

}

Table 3-14: rpc_if_type_info_t structure

rpc_if_type_info_t {

link /* list of which we are a member */

uuid /* the interface’s type UUID */

mepv /* the manager epv table */

copied_mepv /* true iff mepv was copied at registration
time */

}
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tax vector, endpoint vector, and endpoint vector element members are simple
enough that they need not be described in detail.

Figure 3-12 illustrates how these structures are related.

Table 3-15: rpc_if_rep_t structure

rpc_if_rep_t {

ifspec_vers /* Version of this structure. Only one is
currently supported */

opcnt /* the number of operations in this inter-
face */

vers /* decomposed into major and minor version
numbers by RPC_IF_VERSION macros */

id /* the interface UUID */

stub_rtl_if_vers /* Version of stub/runtime API that we
expect to use */

endpoint_vector /* an rpc_endpoint_vector_t structure */

syntax_vector /* an rpc_syntax_vector_t structure */

server_epv /* the server stub epv */

mgr_epv /* the manager epv */

}
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Figure 3-12: Interface Registry and Type Info Lists

Common Interface Registry Internal Operations
The common interface registry services comprise a number of public and private
functions and macros.Figure 3-13 illustrates their operations.
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Figure 3-13: Common Interface Registry Internal Operations
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rpc__if_inq_endpoint
This routine, used by rpc_server_use_all_protseqs to com-
pose the intersection of a system’s supported protocol sequences
and the protocol sequences specified in the endpoint attribute of
an interface definition, traverses the array of endpoint/protseq_id
pairs referenced in the if rep’s endpoint_vector field, calling the
internal function rpc__network_pseq_id_from_pseq to
derive the RPC protocol id value (defined in com.h) from each
vector element’s protseq_id. We do the conversion to simplify
handling of aliases.

rpc__if_lookup
This function searches the interface registry for a given interface
UUID. On the assumption that sequential calls to this function will
most often request a lookup of the same interface, the initial search
is based on a “hint” initialized by the previous search. (Unsuccess-
ful searches initialize this hint to an “invalid hint” value.) If this
lookup fails, either because the hint is already invalid, or because a
hint-based search does not yield a match, rpc__if_lookup
resorts to the normal search method of computing a hash value
based on the interface UUID, then using that value to index into the
interface registry.

rpc__if_mgmt_inq_if_ids
This function builds a vector of RPC interface id structures repre-
senting all the active, non-internal interfaces that a server has regis-
tered. It calls rpc__if_mgmt_inq_num_registered to
determine the number of active entries, then allocates storage for an
rpc_if_id_vector_t of these elements and fills in the vector
by calling rpc_if_inq_id on each interface registry entry that
does not have the internal flag set. This routine supports the public
function rpc_if_mgmt_inq_if_ids.

rpc__if_mgmt_inq_num_registered
This function returns an integer value representing the number of
non-internal if_entrys under each registered interface.

rpc__if_set_wk_endpoint
This function calls the internal function rpc__if_inq_endpoint
to return the well-known endpoint (if present) referenced by the if
spec. If it finds one, it calls rpc__naf_addr_set_endpoint to
set the endpoint in the referenced rpc_addr.

rpc__server_register_if_int
This is the interface service’s base registration function. It is used
by all internal functions that need to register an interface, and is the
basis of the public function rpc_server_register_if. It
builds and interface registry entry by copying the manager epv ref-
erenced in the ifspec argument, then computes an index at which
to register the entry by hashing the type UUID. If no entry exists at
this index, rpc__server_register_if_int allocates and ini-
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tializes an entry, then adds it to the list.
If this routine is called with a NULL manager_epv argument, it
uses the default manager epv referenced in the if rep. Otherwise it
copies the interface’s manager epv.

rpc__server_unregister_if_int
This is the interface service’s base unregistration function. It is used
by all internal callers, and is the basis of the public function
rpc_server_unregister_if.

unregister_if_entry
This is the low-level function called by
rpc__server_unregister_if_int to remove an individual
element from the interface registry.

Public Interfaces
rpc_server_register_if

This function simply calls rpc_server_register_if_int with
the internal flag set false.

rpc_server_unregister_if
This function calls rpc_server_unregister_if_int with the
internal flag set false

rpc_if_inq_id
This function extracts major/minor interface version numbers from
the if rep’s vers field via the RPC_IF_VERSION macros

rpc_if_id_vector_free
This function frees memory allocated for an
rpc_if_id_vector_t

rpc_server_inq_if
Given an ifspec pointer, this function returns the interface UUID
and manager epv.

Object Registry Services
As described in Section 6.1 of the AES, object UUIDs provide a server with a way
to support multiple implementations of an interface. The means by which applica-
tions can take advantage of this feature are described in the AES. This section pro-
vides a brief discussion of the mechanism by which the runtime supports this
feature. Everything described in this section is implemented in the file comobj.c.
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Object Registry Data Structures
The object registry is an rpc_list_t of three-member elements that represent
object/type UUID pairs. Table 3-16 illustrates an object registry entry.

This list has its associated mutex, which is used to synchronize manipulations of
list contents with the ongoing operations of the runtime. Object registry entries are
indexed by a hash value derived from the object UUID. Figure 3-14 illustrates the
prototypical object registry lookup operations.

Figure 3-14: Object Registry Internal Operations

Object Registry Internal Operations
The object registry services comprise two private routines and three public ones.
We describe them briefly here.
 rpc_object_set_type

This function adds an element to the object registry. It first calcu-
lates an index for the entry by hashing on the object UUID. If the
type UUID is the nil UUID, rpc_object_set_type removes any

Table 3-16: rpc_obj_rgy_entry_t structure

rpc_obj_rgy_entry_t {

link /* list of which we are a member */

object_uuid /* the object UUID */

type_uuid /* and its associated type UUID */

}
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object registry entry with a matching object UUID. Otherwise, it
checks to be sure that the object UUID is not already registered,
then inserts the type/object UUID pair into the list at the appropri-
ate spot.

rpc_object_inq_type
This function indexes into the object registry to the place where the
given object UUID resides, then returns the associated type UUID
if there is one. If the entry’s type UUID is nil,
rpc_object_inq_type calls the inquiry function (described in
the next paragraph) if one has been registered. Failure to deliver an
object-to-type mapping returns a nil UUID and leaves the
type_uuid field of the registry entry set to nil.

rpc_object_set_inq_fn
Applications may call this routine to register an inquiry function
that rpc_object_inq_type will use to derive object-to-type
mapping for object registry entries that have a nil type_uuid field.

rpc__obj_init
This private routine initializes the object registry and its mutex.

 rpc__obj_fork_handler
This private routine is the fork handler associated with the object
registry. It simply arranges to NULL out all the entries in the object
registry in the postfork child.



Revised 7/27/93 RPC Nameservice Interface

Copyright  1993 Open Software Foundation 4-1

Chapter 4: RPC Nameservice Interface

DCE RPC is integrated with the DCE Cell Directory Service (CDS) via a group of
routines that enable servers to store information about themselves in the CDS data-
base and clients to retrieve this information. These routines comprise what is
known as the Name Service Interface, or NSI. Since external NSI interfaces try to
avoid dependencies on unique features of the DCE 1.x Cell Directory Service, the
term NSI has additional connotations of Name Service Independence.
In this chapter, we describe those features of the NSI layer that most directly
reflect the needs of the RPC runtime. Much NSI implementation detail is unavoid-
ably a consequence of the DCE 1.x Cell Directory Service implementation, which
is something we don’t intend to deal with in this volume. Accordingly, we shall
henceforth assume, as much for our own convenience as anyone else’s, that the
reader is at least as well acquainted with the CDS implementation, and as able to
infer its effect on the internals of various NSI routines, as the author.

A Brief Overview of NSI Services
The complex nature of the NSI implementation and its relationship to the RPC
runtime, along with our necessarily superficial treatment of some of its details,
suggests that at least a short discussion of the conceptual framework in which NSI
operates will prove useful in understanding the data structures, internal functions,
and data flows we discuss in later section of this chapter. Readers who are already
familiar with NSI on this level should feel free to move ahead.
The NSI layer builds a specialized name service that deals strictly in the names by
which clients and servers refer to each other; that is to say, binding reps. Servers
use NSI routines to export binding data into the DCE namespace. Clients use NSI
routines to import bindings in which they are interested. The NSI layer coerces
exported binding data into a form usable by CDS, and decomposes CDS database
entries into a form suitable for use by the RPC runtime. The name syntax required
by a particular nameservice is specified in a global RPC runtime string constant
(currently, only rpc_c_ns_syntax_dce is supported).
Viewed from the highest level, the NSI namespace consists of three types of
entries:
• A server entry includes interface, object, protocol, and address information

about a single server instance.
• A group entry includes the names of a (presumably functionally related) group

of servers.
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• A profile entry can include server and/or group entry names, and provides a
means for recommending (by prioritizing) a set of servers and services, which
can be desirable for the purpose of establishing organizational defaults, for
example, or for simplifying the search process.

Figure 4-1 illustrates these NSI namespace elements and their relationships.
Figure 4-1: Example NSI Entry Types

Four of the Cell Directory Service’s attributes —tower, object, group, and pro-
file— are specificallyintended for use by NSI. NSI entries exist in the CDS name-
space as CDS entry objects with one or more of these attributes, as illustrated in
Figure 4-2. These attributes are used by NSI routines to establish search criteria
that expedite lookup and other processing of binding data.
NSI services fall into several categories.
• Initialization services that initialize base NSI data structures.
• Attribute services that read, write, and otherwise manipulate the CDS NSI

attributes.
• UUID services that convert the runtime’s UUID datatypes to and from their

CDS representation.
• Configuration Profile and Server Group Services that furnish the runtime’s

connection to the profile and group entries described above.
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Figure 4-2: CDS NSI Attributes

• Protocol Tower Services that operate on the CDS’s representation of a binding
handle (called a protocol tower) and on the runtime’s references to these
objects.

• Binding Services that facilitate export and import of bindings to and from the
CDS namespace.

• Lookup Services that allow clients to look up servers in the NSI/CDS name-
space.

In this document, we will concentrate on the NSI’ s protocol tower,
binding, and lookup services. We do not address profile,
group, and attribute services.

Protocol Tower Services
As we’ve described, server entries in the CDS namespace have both object and
towers attributes. The object attribute facilitates search by object UUID. The tow-
ers attribute facilitates searches for other binding handle information (interface
UUID, interface version, protocol sequence, data representation) that CDS stores
in data structures known as protocol towers. Since protocol towers form the basis
of most NSI operations, we feel they deserve an expanded discussion here.
Protocol towers are repositories of binding information. The designers of protocol
towers envisioned them as structures with multiple floors (numbered somewhat
unconventionally from the top down). Protocol towers provide a convenient
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abstraction for organizing the various units of information that the client and server
halves of an RPC require to establish and maintain a connection.
Every tower has at least three floors, numbered 1, 2, and 3, and known generically
as the upper floors. These floors contain information related to the DCE RPC pro-
tocol. Towers have a variable number of lower floors, which contain network pro-
tocol information. (See Figure 4-3.)
Each tower floor consists of a left hand side, which can be generically described as
a protocol identifier, and a right hand side that contains data related to that protocol
identifier.

Protocol Tower Data Structures
There are four fundamental constraints on operations involving towers:
• To satisfy CDS database requirements, each tower is ultimately encoded for

storage in the CDS database as a variable length octet string, which we refer to
as the nameservice representation of a tower. Encoding rules for generating
these octet strings depend on the floor’s contents.

• To satisfy another of the CDS database’s requirements, tower octet strings are
always stored in little-endian byte order. Systems with a different native byte-
ordering convention must make whatever transformations are required on the
returned data.

• Tower octet strings are not padded. Systems with specific data alignment
requirements must align the individual data items in memory after they have
been retrieved from a tower.

• Tower floor contents may not always reside in contiguous buffers (for exam-
ple, during an export operation).

Given these constraints, the RPC runtime needs a set of convenient handles with
which to reference tower contents in whole or in part, and the means of transform-
ing these handles to and from the a tower’s native octet string format. The most
basic of these structures, illustrated inTable 4-1 represents an individual tower
floor.

Two other structures complete the picture. The first represents a tower reference,
and is composed of an array of pointers to floors and a count of pointed-at floors in

Table 4-1: rpc_tower_floor_t data structure

rpc_tower_floor_t {

free_twr_octet_flag /* true iff this floor’s octet string
should be freed by the runtime */

prot_id_count /* count for lhs octet string */

address_count /* count for rhs octet string */

*octet_string /* pointer to this floor’s octet
string */

}
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the array. The second is a vector of tower reference structures, which the runtime
uses when converting exported bindings to towers. (Each binding may map to mul-
tiple towers, one for each transfer syntax.) Table 4-3 and Table 4-4 illustrate these

structures. (All of the rpc_tower* structures are defined in com.h.)

The layout of the towers themselves can be treated by consumers of RPC services
as opaque, but since it may be of interest to readers of this document (and helpful
in understanding the operations of the tower service routines), we illustrate it in
Figure 4-3.

Table 4-2: rpc_tower_ref_t structure

rpc_tower_ref_t {

count /* number of floors in this tower */

floor[1] /* array of pointers, one for each of this tow-
er’s floors */

}

Table 4-3: rpc_tower_ref_vector_t structure

rpc_tower_ref_vector_t {

lower_floors /* wire-format contents of lower tower
floors, obtained from CDS, saved here as an
optimization */

count /* number of towers in this vector */

tower[1] /* array of pointers to towers in this vec-
tor */

}
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Figure 4-3: Tower Data Layout

Tower Service Internal Operations
The various functions that comprise tower services are implemented in the files
named comtwr*.[ch]. While some of these functions are nominally scoped pub-
lic, none are supported for — or would be of much use to — external callers.
Lower (protocol-specific) tower floors are constructed with routines found in files
named twr_PROTOCOL.[ch], where PROTOCOL is one of ip, dds, dnet, or osi.
Tower service routines can be taxonomically grouped as:
• operations that build canonical and reference representations of upper tower

floors. Canonical representations are required for export to the CDS name-
space. Reference representations are required by clients and servers.

• operations that build canonical and reference representations of lower tower
floors

• operations that examine binding data returned from a tower.
• operations that manipulate tower reference structures
• operations that free tower reference structures
• macros that handle byte-order conversions
Figure 4-4 illustrates the relationship of various tower service routines to the data
transformations required during the binding import/export process.
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the protocol version numbers and protocol id, then converting them
to little-endian order and copying the values into the octet strings.

rpc__tower_flr_from_uuid
This generic routine gets called whenever a higher-level routine
needs to build or modify the information on tower floors one or
two, which include a UUID in their octet string.

Figure 4-4: Tower Service Routines

rpc__tower_flr_from_rpc_prot_id
builds tower floor three using the protseq_id specified in the
binding handle. Only the minor protocol version is stored in the
tower, since the current tower format would be obsoleted by a
major protocol version change.
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transform socket addresses of particular socket families into tower
floors 4-n, or vice-versa. They form part of the naf services infra-
structure, in that they are called exclusively by naf routines.

Tower Reference Manipulations
rpc__tower_ref_add_floor

replaces an existing or adds a new floor pointer for a specified floor
number to the tower array of an rpc_tower_ref_t.

rpc__tower_ref_alloc
allocates and initializes an rpc_tower_ref_t structure. Members
of the structure’s floor[] array are initialized to NULL, after
which they are filled in with the contents of octet strings in the ref-
erences tower. Any floors that do not actually point to an octet
string will remain NULL in the returned structure. The free flag is
always initialized false in a tower reference.

rpc__tower_ref_copy
copies a tower reference and resets the free flag to false in the copy
to prevent the octet string from being freed twice.

rpc__tower_ref_inq_protseq_id
returns an rpc_g_protseq_id from a tower reference. This rou-
tine uses a static table to translate values in the octet to valid proto-
col sequences.

Examining Binding Data
rpc__tower_ref_is_compatible

This routine is called by rpc__bindlkup_node_get_bindings
to determine if the binding information in a tower is compatible
with a client’s binding requirements. It is the primary caller of the
tower routines described in this subsection.

rpc__tower_flr_to_drep
returns the data representation UUID from tower floor two.

rpc__tower_flr_to_if_id
returns the interface id from tower floor one.

rpc__tower_flr_to_rpc_prot_id
returns the RPC protocol ID and version numbers from tower floor
three.

Building Towers from Binding Handles
rpc_tower_vector_from_binding
rpc__tower_ref_vec_from_binding

The SPI routine rpc__tower_vector_from_binding calls
rpc_tower_ref_vec_from_binding to create an
rpc_tower_ref_vector_t for each transfer syntax represented
in a given binding handle. This routine calls the various
rpc_tower_flr_from_* routines described below.
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rpc__tower_flr_id_from_uuid
called by rpc__tower_flr_from_uuid to encode major and
minor version numbers (and handle any required byte order trans-
formations) from the supplied UUID.

rpc__tower_to_tower_ref
rpc__tower_from_tower_ref

These routines convert a tower to a tower ref and a tower ref to a
tower. Both return a pointer to the created object.
rpc__tower_to_tower_ref relies on rpc__tower_alloc to
do most of its work. rpc__tower_from_tower_ref simply
builds the octet strings using memcpy().

rpc__tower_flr_id_to_uuid
decodes the left hand side of tower floor one or two and returns a
UUID and major version number

rpc__tower_flr_to_uuid
returns the decoded contents of tower floors one or two by calling
rpc__tower_flr_id_to_uuid, then getting the address infor-
mation and returning it in the correct byte order.

rpc_tower_to_binding
Given a tower, this function returns a binding handle. It calls
rpc_naf_tower_flrs_to_addr to obtain the rpc address, then
calls rpc_binding_alloc to initialize a binding with that
address.

Freeing Runtime Tower Reference Structures
rpc_tower_free
rpc__tower_flr_free
rpc__tower_ref_free
rpc__tower_ref_vec_free
rpc_tower_vector_free

This group of routines forms a hierarchy of functions responsible
for freeing memory allocated to hold tower floor octets and the var-
ious forms of runtime references to towers. The
rpc__tower_flr_free routine handles the base operation of
freeing an individual tower floor (octet string) if that floor’s
free_twr_octet_flag is set. At the next level up,
rpc_tower_free calls rpc__tower_flr_free on each floor of
a tower. These routines in turn get called by the ref and vector free
operations to free tower references and vectors thereof.

NSI Lookup Services
NSI lookup services provide the means by which clients can search the CDS
namespace for compatible server bindings. Each lookup begins with a namespace
entry known to the client. The client can obtain this information in several ways
(e.g., by way of the default profile entry). This section concerns the mechanics of
the lookup process, especially those related to tower lookup.
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NSI lookups are attribute-based searches of the CDS namespace using the NSI
attributes illustrated in Figure 4-2. Several assumptions govern the lookup imple-
mentation:
• The CDS namespace is hierarchical, and searches may begin at any point in the

hierarchy.
• Any combination of attributes may be associated with any namespace entry.
• Searches of group and profile entries should return entry members in random

order.
• The hierarchical nature of the CDS namespace means that a given search path

may be re-entered as a result of traversing an entry that includes a pointer to a
superior branch of the hierarchy. These “cycles” in the search process need to
be detected and handled (typically by being skipped over).

NSI Lookup Services Data Structures
NSI lookup operations take place within a lookup context established by the
lookup services. This data structure includes information abut the type of search to
be conducted, the number of things the searcher is prepared to find, and a list of
nodes (nameservice entries) to search. The lookup context, its nodes, and their ele-
ments are the major data structures we’ll deal with here.Table 4-4 illustrates a

Table 4-4: rpc_lkup_rep_t structure

rpc_lkup_rep_t {

common /* stuff common to all ns handles (cur-
rently just cache expiration) */

if_spec /* pointer to the interface rep */

obj_uuid_search /* type of obj UUID search (match/any)*/

obj_uuid /* the object UUID we’re looking for */

obj_for_binding /* the object UUID we actually use in the
binding */

inq_cntx /* the inquiry context (rpc_ns_handle_t)
representing our connection to the CDS
namespace */

max_vector_size /* max number of items we are prepared to
find */

node_list /* list of elements we will be pawing
through */

non_leaf_list /* list of nodes we have already exam-
ined, used for cycle detection */

first_entry_flag /* true if we haven’t looked anything up
yet */

}
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lookup context. Table 4-5 and Table 4-6 illustrate a lookup node and a node ele-
ment, respectively. Figure 4-5 illustrates how all of these structures relate to each
other to form the overall lookup context.
Lookup nodes and their members are drawn from a pool of elements of each type
established as a part of NSI initialization. All of these lists are of the rpc_list_t
type, described on page 3-6.
Cycle detection is implemented by maintaining a list of nonterminal namespace

entries (lookup members) already seen. Before examining a new lookup node, the
lookup services check the non_leaf_list. If any of the node’s predecessor
nodes node appears there, the lookup routine declares that a cycle has been
detected and terminates the search of the current node.

Table 4-5: rpc_lkup_node_t structure

rpc_lkup_node_t {

link /* list of which we are an element */

*name /* pointer to our nameservice entry */

type /* type of search to conduct */

mbrs_count /* number of members in mbrs_list */

priority_group_count /* number of members with a lower pri-
ority than the member currently being
examined */

mbrs_list /* rpc_list_t of lookup node members
*/

}

Table 4-6: rpc_lkup_mbr_t structure

rpc_lkup_mbr_t {

link /* list of which we are an element */

*name /* the member’s nameservice name */

priority /* the member’s priority */

}
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Figure 4-5: NSI Lookup Context, Nodes, and Elements

Lookup Services Internal Operations
NSI lookup services comprise three public functions and ten private ones. These
functions are responsible for implementing the NSI binding lookup algorithm. Fig-
ure 4-6 is a top-level look at the internal operations of the binding services. Figure
4-8 illustrates the actual lookup process in more detail. Public NSI lookup func-
tions can be called directly by clients who need to obtain a vector of bindings.
These routines are also called internally by the NSI binding import services, which
return a single binding to a client.
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Figure 4-6: NSI Lookup Service Internal Operations

NSI Search Algorithm
A brief explanation of the NSI search algorithm should precede any discussion of
lookup services internal operations. This algorithm, which is largely implemented
within the function rpc__bindlkup_node_process, can be represented in
pseudocode as shown in Figure 4-7.
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Figure 4-7: NSI Search Algorithm

/* lookup bindings */
lookup(rpc_nsentry_p_t nsentry) {

switch(nsentry->type){
case server:

if(compatible ifspec && compatible obj_uuid)
return(nsentry->bindings);

else return(NULL);
case group:

for((random_order)element)
if(bindings = search(member))!=NULL)

return(bindings);
return(NULL);

case profile:
for((priority(random_order))member)

if(compatible ifspec)
if(bindings = search(member))!=NULL)

return(bindings);
return(NULL);

}
}

Initialization
rpc_ns_binding_lookup_begin

This public function initializes and returns a handle to a lookup
context for a given nameservice entry. It returns the status code set
by rpc__bindlkup_node_create.

rpc__bindlkup_node_create
This private function is called by
rpc_ns_binding_lookup_begin to do the actual work of creat-
ing an rpc_lkup_rep_t and its attendant lists.

Binding Lookup
rpc_ns_binding_lookup_next

This public routine traverses the lookup context and returns a vec-
tor of bindings compatible with the ifspec and object UUID speci-
fied in rpc_ns_binding_lookup_begin. It calls all of the other
routines in this subsection

rpc__next_priority_group_count
This function initializes the priority_group_count field of a
lookup node to the number of member elements that have a lower
priority so that it can return bindings that are randomized within a
particular priority class.

rpc__bindlkup_node_process
This function implements nearly all of the NSI lookup algorithm. It
examines a lookup node, decomposing it as necessary into list ele-
ments, and returns with a vector of client-compatible bindings. If a
lookup node is a tower entry, this function calls
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rpc__bindlkup_node_get_bindings to return the tower’s
bindings. If the entry is a group or profile, it calls
rpc__bindlkup_node_pick_mbr to select a random entry,
checks for the occurrence of a cycle, then creates a node for the
entry (rpc__bindlkup_node_create).

rpc__bindlkup_node_get_bindings
This function returns the bindings from a tower. Repeated calls to
this function during rpc__bindlkup_node_process generate
the binding vector that is the principal output of the NSI lookup
process. Object UUID compatibility is determined by calling the
appropriate rpc__bindlkup_obj_uuid_* function, after which
the rpc__tower_mbr_inq_* functions are called to process all of
the tower members in the list. This goes on until the binding vector
is full or an error occurs during tower inquiry.

rpc__bindlkup_obj_uuid_match
rpc__bindlkup_obj_uuid_any

These two functions, called during
rpc__bindlkup_node_process, implement object UUID
search criteria for either any (or no) object UUID or an exact object
UUID match.

rpc__bindlkup_node_expand_mbrs
This function expands group and profile entries into lists of constit-
uent elements. It takes care of checking cached entries against
either a global or application-dependent expiration age, then calls
the rpc_ns_group_* and rpc_ns_profile_* routines to
traverse the entry in question. This function is also responsible for
allocating lookup nodes and member list elements from the free
elements list, and for sorting profile elements by priority.

rpc__bindlkup_node_next_attr
This function implements the switch statement described in the
search algorithm pseudocode. If the current entry is a tower (has the
towers attribute), the entry is dispatched to
rpc__bindlkup_node_get_bindings. If it is a group or pro-
file, rpc__bindlkup_node_next_attr adds the entry name to
the non_leaf_list, then calls rpc__bindlkup_expand_mbrs to
expand the list.

rpc__bindlkup_node_pick_mbr
This function returns a pointer to a randomly selected member of a
group or profile entry.

rpc__bindlkup_node_is_cycle
This function is called by rpc__bindlkup_node_process to
compare the current element (the node it is processing) with nodes
on the non_leaf_list. If the current member element is equal to a
non_leaf_list entry and its predecessor is also the
non_leaf_list entry’s predecessor, this function returns true.
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rpc__bindlkup_node_free
frees a lookup node, including all member list elements. It also
takes care of returning freed list elements to the list of free elements
(for reuse).

We can relate these functions and the pseudocode in Figure 4-7 to the internals of
the rpc_bindlkup_process_node function as shown in Figure 4-8.

Figure 4-8: Looking Up a Binding
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NSI Binding Services
In the DCE RPC client/server rendezvous model, servers export binding informa-
tion into the NSI namespace and clients import this information when they want to
bind to specific interfaces or servers. The NSI layer provides a set of functions that
implement these import/export operations in typical NSI fashion by setting up an
import context and providing an iterator function that clients can use to select
bindings from that context. Most of the routines described here are implemented in
the files nsbndimp.c and nsbndexp.c.

NSI Binding Services Data Structures
NSI Binding service export operations deal exclusively in the data structures
defined by the Protocol Tower Services. Binding service import operations are
based on an import context data structure, illustrated in Table 4-7.

NSI Binding Services Internal Operations
Most of the internal operations of the NSI binding services are scoped public. We
divide them here for ease of presentation into export and import operations.
Export Operations
rpc_ns_binding_export

This public function exports a supplied vector of bindings (which
its caller obtains by calling rpc__ns_binding_vector_copy)
into the NSI namespace. Towers entries (namespace entries with
the Towers attribute) are generated by calling the rpc__tower_*
functions. UUID entries are generated via the rpc_nsuuid_*
functions. Once exportation is complete, the binding vector is freed.
This function checks for and removes NULL handles on the
assumption that these were originally duplicate handles that have
been NULLed by rpc_ns_binding_vector_copy.

rpc_ns_binding_unexport
This public function allows servers (or anyone else, management
applications, for example) to selectively remove exported binding
information. It is really just a wrapper for various internal func-
tions, and calls rpc_ns_mgmt_binding_unexport, which itself
calls an internal management routine named unexport_towers

Table 4-7: rpc_import_rep_t structure

rpc_import_rep_t {

common /* data common to all nameservice handles
(currently just cache expiration age */

*binding_vec /* pointer to a binding vector returned by
lookup operations */

lookup_context /* nameservice handle of the lookup context
associated with this import context */

}
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to do the actual freeing of towers that hold the binding data to be
unexported. Like all management routines, this function and the
functions it calls bypass the nameservice cache.

rpc__ns_binding_vector_copy
This internal function is called by rpc_ns_binding_export to
filter an input rpc_binding_vector_t and produce a copy of
that vector minus any duplicate binding handles and with all
dynamic endpoints reset. This function calls rpc_binding_copy
to copy the input binding vector, then calls rpc_binding_reset
on each copy that has a dynamic endpoint. Duplicate bindings are
detected through comparison of their string binding representations.

Import Operations
The “begin, next, end” sequence of import operations are nothing more than wrap-
pers that simplify the analogous sequence of lookup operations.
rpc_ns_binding_import_begin

This public function allocates the import context referred to by the
next two routines in this group, then calls
rpc_ns_binding_lookup_begin to establish a lookup context.

rpc_ns_binding_import_next
This public function calls rpc_ns_binding_lookup_next to
return a vector of compatible bindings.

rpc_ns_binding_import_done
This public function frees the binding vector and the lookup context

rpc_ns_binding_inq_entry_name
This public function calls rpc_nsentry_to_entry to convert the
CDS opaque name referenced in a binding rep’s ns_specific
field, then copies the entry name into the binding handle’s
entry_name field and optionally returns the name to the caller.
Applications (e.g. rpccp) use this function to determine how a
group or profile inquiry was resolved during lookup.
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Chapter 5: Endpoint Mapping Services

The network transports over which DCE RPC typically runs today have what is
described in ep.idl as a “small endpoint namespace.” For example, the end-
points to which RPC clients using an IP transport ultimately bind are internet sock-
ets, which on many systems are named by small (16-bit) integers. This namespace
is further constrained in that not all sockets are accessible to unprivileged users,
and those that are can be bound to by any application, effectively removing them
from the list of valid RPC communications endpoints.
In response to these sorts of constraints, DCE RPC includes support for dynami-
cally-generated server endpoint names (binding handles, stored in the nameservice
as towers), a per-host endpoint database in which servers on that host register
information about the interfaces they support, and a per-host endpoint mapper
facility that maps this information to actual communications endpoints (e.g.,
sockaddrs). Endpoint mapping services constitute a sort of local analogue of the
global (NSI) namespace, where the names of interest are in the host’s endpoint
address space.
Clients use the endpoint mapper to convert a partially bound handle (one without
an endpoint address, but with all of the interface and object information) to a fully
bound one. Clients that already have a fully-specified (e.g., string) binding do not
need the endpoint map. The endpoint mapper is used somewhat differently by con-
nection-oriented and connectionless clients, but the fundamental internal opera-
tions are the same, conceptually at least, for both.
The endpoint database is maintained by the rpcd, a per-host catch-all daemon that
performs a number of useful jobs, including:
• management of the endpoint database
• registration and deregistration of server entries
• periodic endpoint database entry validation (server liveness monitoring)
• garbage collection of invalid entries
• forwarding services used by datagram RPC protocols
• endpoint resolution services used by connection-oriented RPC protocols
• compatibility services that support DCE RPC’s predecessor, NCS1.5.1
In this chapter, we discuss the endpoint database itself, the rpcd’s database man-
agement and endpoint mapping functions, and the collection of library routines
that servers call to register interfaces in the endpoint database. All of the facilities
described in this chapter are implemented in the files rpcd/*.[ch] and
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runtime/comep.c. The endpoint mapper’s remote interfaces are defined in
sys_idl/ep.idl.

Overview of Endpoint Services
As we mentioned, the endpoint database represents a per-host namespace analo-
gous to the global namespace supported by the DCE CDS/NSI facilities. Like
CDS, the endpoint database has an associated set of remote operations that allow
clients and servers to invoke database operations such as insert, delete, and lookup.
It also includes internal functions that serve as a bridge between the local and glo-
bal namespaces, as well as routines that periodically “ping” registered servers to be
sure that they are still able to communicate with clients and, if they aren’t, remove
their entries from the endpoint database. Figure 5-1 illustrates the rpcd’s role in
the DCE RPC universe.

Figure 5-1: The rpcd’s Role
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• management routines, which are remote operations that allow management
applications to examine and, if necessary, alter the contents of the endpoint
database on the local host or on a remote one.

• server liveness monitoring and related garbage collection of invalid database
entries, which are fundamentally local operations (with the exception of the
server ping operation)

• forwarding services that datagram RPC clients use to establish initial contact
with a server whose host is known but whose endpoint is not.

• endpoint resolution services that connection-oriented RPC clients use to dis-
cover the endpoint at which to bind to a server on a given host.

There are two related facilities that we do not discuss in this edition of this docu-
ment: the distributed storage manager (dsm) routines, which implement the actual
database used by the rpcd, and the various compatibility routines that allow the
rpcd to support NCS 1.5.1 local location broker (llbd) functions.

The Endpoint Database
The endpoint database is a dynamic database of the interfaces supported by the
DCE RPC servers on a given host and the communications endpoints (e.g.,
sockaddrs) at which those servers can be reached. Servers add information to the
database by calling the public functions rpc_ep_register_no_replace and/
or rpc_ep_register. They delete information from the database by calling
rpc_ep_unregister. While the AES prescribes that servers take pains to unreg-
ister themselves before shutting down, the designers of DCE RPC assumed that at
least some servers will occasionally crash or make some similarly disorderly exit
that leaves a stale registration behind, which is why the rpcd periodically checks
each registered server to see if it is still listening. Servers that appear to be not lis-
tening are eventually declared dead, and will have their entries unregistered by the
rpcd.
The in-memory endpoint database is backed in stable storage so that, in the event
the rpcd has to be re-started on a running system, no registrations will be lost. This
feature also causes registration data to persist across system reboots, however,
even though it is unlikely to still be valid (especially after a system crash). Normal
rpcd garbage collection will eventually correct this situation, as will forced
removal of the database file on reboot.
The rpcd can cope with endpoint database format changes, and will simply delete
a database with an “older” version id, then recreate one from scratch in the “new”
format. If it finds a database with a “newer” version id, the rpcd will exit with an
error status.
The rpcd organizes database entries into in-memory lists. Each entry appears on
three lists:
• a linear list of all entries in the database, used by the liveness monitoring rou-

tines
• an object list of entries with the same object UUID
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• an interface list of entries with the same interface UUID
This trio of lists is itself represented by a “lists” data structure referenced by each
database entry. Individual list items are accessed by manipulating a pair of forward
and back pointers. For improve lookup performance, the rpcd maintains tables of
object and interface entries indexed by UUID hash. Each bucket in these tables
points to the head of a list of entries whose object or interface UUIDs hash to the
same bucket. Figure 5-2 illustrates these lists.
In-memory changes to database entries are written back to the stable store. The list
structures are regenerated by the rpcd when it starts up.

Major Endpoint Database Data Structures
The base endpoint entry type, the wire representation of an endpoint database entry
that all callers of the endpoint mapper reference, is defined in ep.idl. As illus-

trated in Table 5-1, this structure includes an object UUID, a pointer to a protocol
tower, and an annotation field. The annotation field is a fixed-length array of octets
intended to allow servers to supply users of administrative applications with some
clue as to the description of an interface.
Each endpoint database entry is represented by the data structure illustrated in
Table 5-2. This structure furnishes the runtime’s reference to an ept_entry_t,
and includes all the information in that structure and the protocol tower it refer-
ences, as well as additional data required for determining server liveness. The
structure also includes several fields that support NCS 1.5.1 compatibility (we

Table 5-1: ept_entry_t structure

ept_entry_t {

object /* object UUID */

tower /* pointer to tower */

annotation[] /* annotation octet string */

}
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won’t discuss these here). Shaded fields in Table 5-2 are derived from the contents

of the tower referenced by the ept_entry_t. Other fields of special interest
include:
read_nrefs In an attempt to reference count endpoint database entries, each

Table 5-2: db_entry_t structure

db_entry_t {

lists /* the lists on which we appear */

read_nrefs /* how many readers of this entry
have released the db_lock */

ncomm_fails /* how many consecutive attempts to
ping this server have failed */

delete_flag /* true iff this entry should be
deleted when read_nrefs == 0 */

object_nil /* true iff object UUID is nil */

if_nil /* true iff interface UUID is nil
*/

object /* this entry’s object uuid */

interface /* this entry’s interface UUID */

data_rep_id /* this entry’s transfer syntax
UUID */

data_rep_vers_major /* this entry’s transfer syntax
major version */

data_rep_version_minor /* transfer syntax minor version */

rpc_protocol /* rpc protocol id */

rpc_protocol_vers_major /* protocol major version */

rpc_protocol_vers_minor /* protocol minor version */

type /* for NCS compatibility */

llb_flags /* for NCS compatibility */

saddr_len /* for NCS compatibility */

addr /* rpc address (for forwarding)
Derived from “tower” entry at rpcd
startup time */

annotation[] /* annotation string */

tower /* twr_t to which this entry refers
*/

}
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entry includes this field, which is supposed to be incremented by
any function that references the entry while holding the endpoint
database’s mutex lock. Such functions should also decrement
read_nrefs when done with the structure.

ncomm_failsThis field is initialized to zero and incremented every time one of
the server liveness tasks tries unsuccessfully to communicate (via
rpc_mgmt_is_server_listening) with the server represented
by this entry,

delete_flagThis field is set by one of the server liveness tasks to indicate that
the entry refers to a “dead” server, and should be deleted once it has
no more readers (i.e., when read_nrefs=0)

As we’ve described, the rpcd organizes database entries onto lists, which it
accesses via the structures illustrated in Table 5-3 and Table 5-4.  In addition to the

data structures we’ve illustrated, the rpcd’s database management functions
employ a simple structure consisting of a forward (fwd) and backward (back)
pointer to traverse the entry, object, and interface lists. Depending on the type of
list, these pointers point to either adjacent list elements, or to the first and last
items on the list.
Figure 5-2 describes the relationships among these structures and the lists they ref-
erence.

Table 5-3: db_lists_t structure

db_lists_t {

entry_list /* linear list of all database entries */

object_list /* list of entries with this entry’s object
UUID */

interface_list /* list sorted by interface UUID */

}

Table 5-4: db_lists_mgmt_t structure

db_lists_mgmt_t {

entry_list /* linear list of all entries */

object_table /* entries sorted by object UUID hash */

interface_table /* entries sorted by interface UUID hash */

}
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Figure 5-2: Endpoint Database Entries and Lists
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(first entry) of the list or table, and back is initialized to point to the last entry.
Figure 5-3 provides a more detailed view of the relationship of an individual
ept_entry_t to the tower it references and details the relationship of an entry’s
contents to where it appears in the endpoint database. It also shows the relationship
of the entry lists to the hash tables used to look up entries.
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Figure 5-3: Getting an Entry into the Endpoint Database
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Figure 5-4:Endpoint Database Internal Operations
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db_open opens the endpoint database and does database version checking
db_update_entry

calls the dsm library to updates a record in stable (disk) storage.
db_init_lists

initializes the forward and back pointers to the hashed object and
interface tables, and to the entry list. Backward pointers are initial-
ized to point to the last entry. Forward pointers are initialized to
NULL. This function also computes the offset used to determine
the beginning of the list.

db_htable_add
adds an entry to the uuid-hashed list. This and all other hashing rou-
tines call uuid_hash to compute the entry’s hash bucket. Hash buck-
ets are mildly coerced to fit into the maximum number of hash table
entries.

db_htable_remove
deletes an entry from the uuid-hashed list

db_lists_add, db_lists_remove
adds/removes an entry to/from all three (entry, interface, object)
lists

db_list_add, db_list_remove,
lower -level functions called by db_lists_add and
db_lists_remove to operate on individual lists.

list_add the “add” primitive
list_remove

the “remove” primitive
db_list_first

returns a pointer to the first list element for the specified type of list.

Table 5-5: db_contexth_t structure

db_contexth_t {

*db_handle /* opaque pointer to the database we’re
using */

list_type /* type of list (entry, object, interface)
we’re traversing */

*lp /*list element to which we were last point-
ing */

pass /* traversal pass (set by db_list_first/
next operations */

}
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db_list_next
returns a pointer to the element following the specified element on
the specified list. List traversal proceeds as:

while (entry != NULL) {
entry=db_list_next(list)

}

db_get_context, db_save_context, db_delete_context
gets/saves/deletes an entrypoint database lookup context handle

db_bad_context, db_different_context
These routines are used to validate context handles before using
them to continue an endpoint database lookup operation.

db_lock, db_unlock
mutex locks/unlocks the endpoint database handle

db_to_ept_ecode
maps primitive (dsm) error codes to DCE error statuses.

Endpoint Database Internal Operations
Operations specific to the endpoint database (as opposed to the NCS 1.5.1 local
location broker database, which the rpcd also supports) are implemented in the file
rpcdepdb.c.

Nearly all the operations in this facility reference, either directly or through an
opaque epdb_handle_t pointer type, the endpoint database handle structure.
illustrated in Table 5-6.

Brief descriptions of the more important endpoint database routines follow:
epdb_init This function calls db_open, db_init_lists, and other database

Table 5-6: db structure

db {

dsh /* dsm database handle type */

object /* object UUID of this database object */

lists_mgmt /* the entry list and (hashed) object and
interface UUID lists */

lock /* the mutex lock for this database */

sliv_task1_h /* thread handle to server liveness task 1
*/

sliv_task2_h /* thread handle to server liveness task 2
*/

sliv_task_2_cv /* server liveness task condition variable,
used to communicate between the two server
liveness tasks */

}
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management operations to set up the in-memory representation of
the endpoint database. It initializes the database’s mutex lock, starts
the server liveness tasks, and returns the database handle that oper-
ations on the database will reference.

epdb_inq_handle
returns the handle of the local endpoint database

epdb_handle_from_ohandle
returns the handle of the local or a remote endpoint database

epdb_insert
This function is terminal node of the “insert” path. It lies between
ept_insert and the various tower and naf routines that validate
the tower to be inserted. It locks the database, then, calls the appro-
priate replace or delete functions described below.

epdb_delete
This is the terminal node of the “delete” path. It deletes an entry if
its read_nrefs flag has dropped to zero, otherwise, marks it for
deletion by setting its delete_flag to true.

epdb_mgmt_delete
Since every server exports the management interface, deletion of
these endpoints must proceed a little differently. This function gets
the object and interface from the supplied tower, then calls
epdb_delete_entries_by_obj_if_addr to delete manager
interface entries corresponding to that binding handle.

epdb_lookup
just a wrapper for lookup that locks the database, then performs the
specified type (object or interface) of lookup.

epdb_fwd calls map or map_mgmt (depending on the interface type) to build
an array of forwarding addresses for use by the rpcd’s forwarding
function.

epdb_inq_object
This function returns the object UUID for a given endpoint data-
base object (returns the value in the object field of the
epdb_handle).

epdb_delete_lookup_handle
deletes the lookup context handle

epdb_recreate_lists
recreates the entry, interface, and object lists at rpcd startup time
from stably-stored data.

epdb_chk_entry
rejects any ept_entry_t with a nil interface UUID. If the entry
passes this simple validation, epdb_chk_entry also makes sure
that rpc_tower_to_binding can be called successfully on tower
referenced by the ept_entry_t’s tower field.
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epdb_chk_map_entry
similar to epdb_chk_entry, but does not call
rpc_tower_to_binding and does add an additional test that the
protocol sequence in the tower is supported on the host.

epdb_to_ept
converts an endpoint database entry to an ept_entry_t (wire rep
of an entry)

epdb_insert_entry
writes an entry into the stable store, then calls db_lists_add to
add it to the endpoint mapper’s list structures.

epdb_replace_entry
This is the low-level replace function that actually modifies a data-
base entry.

epdb_is_replace_candidate
called during epdb_replace_entry to compare object, interface,
protseq, data transfer syntax, and protocol.

epdb_delete_replaceable_entries
This is the beginning of the “replace” path. It first determines can-
didacy by calling epdb_is_replace_candidate. Successful
candidates are tested by matching their addr and vers_minor fields
against the target entry.

epdb_delete_entries_by_obj_if_addr
This function is used to delete management interface entries, which
all servers export, from the endpoint database.

epdb_lookup_entry
This function is called by epdb_insert and epdb_delete to
return an entry to match

lookup This primitive gets a lookup context (establishes one if necessary),
then hands off the actual looking up to lookup_match.

lookup_match
This is the real lookup function. It first matches by object UUID,
interface UUID, or both (match by entry always returns true), then
proceeds to match the interface version according to one of the ver-
sion matching options described in the AES. These can be summa-
rized as returning true for the following match types when we’re
matching a candidate if against an entry entp.
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compatible:
if->vers_major == entp->vers_major &&
if->vers_minor >= entp->vers_minor

exact:
if->vers_major == entp->vers_major &&
if->vers_minor == entp->vers_minor

major_only:
if->vers_major == entp->vers_major

upto:
if->vers_major > entp->vers_major ||
( if->vers_major == entp->vers_minor &&

if->vers_minor >= entp->vers_minor
)

epdb_map This is the highest-level endpoint mapping function. It invokes
either map or map_mgmt, depending on whether the interface spec
to be mapped is the management interface (which all RPC servers
export), which in turn invoke the appropriate flavor of “match” rou-
tine below.

map, map_mgmt
These functions implement the mapping rules illustrated in Figure
5-8. Mapping can be done in one or two passes (hence the pass
field of the db_contexth_t (Table 5-5)). If there is a non-nil
object UUID to match against, then pass one does the object UUID
matching. Otherwise, we go directly to pass two and match the
interface UUID.

map_match, map_mgmt_match
These functions take care of mapping the object, interface, data rep-
resentation, protocol version, and protocol sequence fields of a can-
didate tower and an endpoint database entry.

map_mgmt_endpt_unique
This simple function called by map_mgmt scans a list of mapped
entries looking for a specific endpoint. Since all servers export the
management interface, they can only be differentiated by endpoint,
and this routine takes care of preventing duplicate entries in lists of
management interface endpoints.

Common Endpoint Services
The common endpoint services, implemented in comep.c, provide:
• public interfaces to the endpoint mapper’s registration, unregistration, and

lookup functions
• private routines that support the public interfaces
• management routines used by applications such as rpccp to examine and mod-

ify the endpoint database.
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For the most part, these common routines operate by invoking remote operations
on the endpoint mapper’s manager epv, which in turn is the principal caller of the
database management, lookup, and mapping routines described in earlier sections
of this chapter.

Registering Endpoint Entries
Servers call one of the common endpoint services’ endpoint registration functions,
rpc_ep_register and rpc_ep_register_no_replace, with a vector of
binding handles and, optionally, of object UUIDs that they wish to register in the
endpoint database. The actual server registration in the database typically consists
of multiple database entries constructed from the cross product of these vectors,
with the object/interface UUIDs applied to each entry.

Figure 5-5: Composing a Server Registration

As we illustrate in Figure 5-5, this process consists of a server-side operation,
ep_register, that composes an ept_entry_t structure for each combination
of server interface/object pairs using the logic described in Figure 5-6. Each com-
posed entry is supplied as an argument to the endpoint mapper’s remote “insert”
primitive, which takes care of invoking the operations that the rpcd uses to actu-
ally create a database entry from an ept_entry_t.
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Figure 5-6: ept_register pseudocode

while (the binding vector is non-NULL) {
allocate an ept_entry_t
ept_entry->annotation=[annotation string]
if (the object UUID vector is NULL) {

for (each binding in the vector) {
ept_entry->object = nil_uuid
ept_entry->tower = binding
ept_insert(,,ept_entry,)

}
}
else

for (each object UUID in the vector) {
for (each binding in the vector) {

ept_entry->object = object_uuid
ept_entry->tower = binding
ept_insert(,,ept_entry,)

}
}

}
}

Registration operations include a “replace” flag that specifies whether or not a new
registration should replace a matching registration already in the endpoint data-
base. There is a good deal of logic associated with determining whether or not a
candidate ept_entry_t matches an existing db_entry_t, which we try to sum-
marize in Figure 5-8.
Notwithstanding all of the code (in rpcdepdb.c) involved in the replace/no_re-
place decision, the rules that govern this choice can be stated simply as:
• If the registration specifies “replace,” then the candidate ept_entry_t and

the target db_entry_t must match in all fields except the annotation and
network address (db_entry->addr) for replacement — which involves noth-
ing more complicated than changing the epdb_entry_t’s annotation field
and resetting the ncomm_fails and delete_flag fields.

• If the registration specifies “no_replace,” then the ept_entry_t is simply
rendered into a db_entry_t and added to the endpoint database.
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Figure 5-7: Endpoint Database Entry Replacement

Finding Matching Entries
Although the connectionless and connection-oriented RPC protocols make differ-
ent use of the entry lookup services supplied by the endpoint mapper, the mapping
rules and the operations that implement them are the same in both cases.
Connection oriented clients call rpc_ep_resolve_binding with an interface
UUID and an object UUID (which may be nil). Using this information, the rpcd
on the host specified in the input handle examines the endpoint database, looking
for a compatible server instance. The input handle to
rpc_ep_resolve_binding may be partially or fully bound. In the normal case,
a client requesting resolution of a partially bound handle (one in which
addr_has_endpoint is false) will get back either a fully-bound handle if the
endpoint mapper comes up with a match, or a status of ept_s_not_registered
if no compatible servers are registered. When a client inadvertently calls
rpc_ep_resolve_binding with a fully-bound handle, the handle is simply
returned to the client without involving the rpcd. No checking is done to guard
against concurrent use of a binding handle (e.g., by multiple threads).
Connectionless RPC clients do not execute a specific “resolve binding” operation.
Instead, when confronted with a partially-bound handle, they call the rpcd on the
host specified in the handle. The rpcd then forwards the call to a compatible server
instance on that host if one exists. The client obtains the actual server endpoint
from the server’s response.
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Matching rules for determining interface compatibility are described in detail in
the AES, but can be summarized as shown in Figure 5-8. After all of the other
fields have been matched, the endpoint mapper tries for an exact match of interface
and object UUIDs. If that fails, it will settle for an interface-only match with a nil
object UUID.

Figure 5-8: Endpoint Mapper Object/Interface Matching Rules

Endpoint Services Data Structures
Most of the common endpoint services operate on the endpoint database and refer-

ence the structures we’ve already described). The only other data structure defined

Table 5-7: mgmt_ep_inq_rep_t data structure

mgmt_ep_inq_rep_t {

usage /* always mgmt_ep_c_inquiry_context in DCE
1.x */

done /* true if done with this inq_rep */

ep_binding /* binding handle for endpoint mapper */

inquiry_type /* one of [rpc_c_ep_] all_elts,
match_by_if, match_by_obj, match_by_both*/

object /* object UUID */

if_id /* interface id */

vers_option /* version matching rules: one of
[rpc_c_vers_] all, compatible, exact,
major_only, upto */

entry_handle /* lookup handle */

num_ents /* how many entries (below) */

next_ent /* index of next entry element */

entries[] /* array of ept_entry_t */

}
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if_ABCif_ABCif_ABC

uuid_FOO

if_XYZif_XYZ

endpoint database entries

object UUID

interface UUID

no match

ept_entry_t’s
to match



Revised 7/27/93 Endpoint Mapping Services

Copyright  1993 Open Software Foundation 5-19

as part of these services is the inquiry context that supports the rpc_ep_mgmt
operations. Table 5-7 illustrates this type.

Common Endpoint Services Internal Operations
The endpoint services implemented in comep.c comprise eight public interfaces
and 12 internal ones. Several of these are wrappers for others, and several others
provide support for managing the endpoint database (e.g., via rpccp). The bulk of
the work is accomplished in the base ep_register and rpc_ep_unregister
functions. Since many of these routines work by binding to the rpcd and invoking
remote operations defined in the endpoint mapper manager epv
(ept_v3_0_mgr_epv), we describe these routines, which are implemented in
rpcdep.c, here as well.

Figure 5-9: Common Endpoint Services Internal Operations
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tially registered object and if vectors.
rpc_ep_resolve_binding

This is the public wrapper for the private routine
ep_get_endpoint, which we describe below.

rpc_mgmt_ep_elt_inq_begin, rpc_mgmt_ep_elt_inq_next
rpc_mgmt_ep_elt_inq_done, rpc_mgmt_ep_unregister

these are all support functions for use by management applications
such as rpccp. The “begin, next, end” sequence is used to set up an
inquiry context, then traverse it using a set of matching rules speci-
fied in the inquiry_type field of the mgmt_ep_inq_rep_t
structure. Management applications that want to delete individual
endpoint database elements need a special version of the unregister
operation that allows them to construct the tower reference required
by the endpoint database. The rpc_mgmt_ep_unregister func-
tion includes a “canned” if spec template which it fleshes out with a
supplied UUID and version. The resulting if spec is then convert to
a tower with which to call the ept_mgmt_delete operation (part
of the endpoint mapper’s manager epv).

Private Endpoint Mapper Operations
ep_registerThis is the base endpoint database registration function. It rejects

any bindings in the supplied array that do not have endpoints, then
calls the endpoint mapper epv’s ept_insert function to insert
bindings one at a time. This function registers the cross product of
the vector of object UUIDs and the vector of binding handles. If
there are no object UUIDs to register (vector is null or has length
0), it registers an ep entry with a nil object UUID and the interface
UUID from the supplied tower. Otherwise, it populates the rpcd’s
list structures with as many interface and object entries as the vec-
tor represents. For any returned status other than ok or
comm_failure, this function will unregister everything that has so
far been registered, on the theory that only a completely successful
registration counts.

get_ep_binding
delivers the binding handle of the rpcd on a specified host, or con-
structs a string binding (rpc__network_inq_protseqs,
rpc_binding_from_string_binding) to the local rpcd if
input handle is NULL.

tower_to_if_id
converts a tower (tower_p_t) to an interface id (rpc_if_id_t)
by calling rpc__tower_to_tower_ref to build a tower ref, then
calling rpc__tower_flr_to_if_id to derive the interface id
from tower floor 1, after which it frees the tower ref.

ep_get_endpoint
This is the base endpoint resolution function that does the real work
of getting endpoint information into a binding rep. It initially tries
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to fill in the endpoint from the if spec by calling
rpc__if_set_wk_endpoint (which in turn calls into the naf
epv). If this fails, the routine calls the rpcd with a modified version
of the binding in question (com_timeout and auth_info are set
to default_imeout and NULL, respectively. The object UUID is
set nil, since the input binding will be used to contact the rpcd. The
mapping operation in the rpcd is keyed by a tower reference (the
map_tower), which this function obtains by getting a vector of
tower refs), then picking the first vector element. Using this
map_tower, ep_get_endpoint calls the endpoint epv’s
ept_map function to deliver all of the bindings to which the
map_tower maps, then return a random selection from that array.
Once a compatible tower has been obtained, that tower’s endpoint
data (rpc__naf_addr_inq_endpoint) is used to complete the
input binding handle. This function also resets the binding to clear
the boot time (which when returned is the rpcd’s boot time), so that
calls made on this binding won’t fail with a “wrong boot time” error
over the datagram RPC protocol.

rpc__ep_mem_alloc, rpc__ep_mem_free
these routines are wrappers that cast the ptr argument of the
RPC_MEM_ALLOC[FREE] macros to an idl_void_p_t.

The Endpoint Mapper Manager EPV
These routines constitute the manager epv that the rpcd exports. Most are quite
simple, in that they simply obtain a handle to the endpoint database, then invoke
one of the epdb_* operations described earlier in this chapter to actually do the
requested database manipulations. The remote interfaces to these routines are
defined in ep.idl.
ept_insert gets the epdb handle, then calls epdb_insert for each of the sup-

plied array of ept_entry_t elements. if any individual insertion
fails, all array elements are deleted via ept_delete

ept_delete inverse of ept_insert. gets the epdb handle, then calls
epdb_delete for each of the supplied array of ept_entry_t ele-
ments. if any individual deletion fails, this routine returns an error
status

ept_lookup acquires the epdb handle, then calls epdb_lookup to perform the
inquiry

ept_map acquires epdb handle, then calls epdb_map to perform the mapping
operation(s)

ept_lookup_handle_free
calls epdb_delete_lookup_handle on the supplied handle to
free the context handle used in an ept_map or ept_lookup oper-
ation

ept_inq_object
acquires the epdb handle, then calls epdb_inq_object to deliver
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the epdb’s object UUID.

Other Endpoint Mapper Services
In addition to the database management, endpoint resolution, and registration
functions we’ve described so far, the rpcd also monitors server liveness (really just
another database management function) and forwards datagram-protocol RPCs to
a compatible server instance.

Monitoring Server Liveness
When it starts up, the rpcd kicks off two threads, each of which runs one of the
rpcd’s server liveness tasks. These tasks, referred to as sliv_task1 and
sliv_task2, periodically attempt to contact each registered server to see if it is
still alive. Following are descriptions of the server liveness machinery, all of which
is implemented in rpcd/sliv.c.
sliv_init starts the server liveness threads and initializes the condition vari-

able used to synchronize their operations.
sliv_task1 This task runs at an interval specified by the sliv_c_long_wait

constant (currently 15 minutes). Each time it runs, it:
• deletes any database entry whose delete_flag has been set true
(by sliv_task2) and whose read_nrefs field has dropped to
zero.
• attempts to ping any server represented by an entry whose
ncomm_fails field is still zero (meaning that server has always
responded to past pings by sliv_task1). If a server fails to
respond to the ping, sliv_task1 sets the server entry’s
ncomm_fails field and signals sliv_task2 by toggling its con-
dition variable (sliv_task2_cv).

sliv_task2 This task is responsible for ascertaining the status of a server that is
thought to be unresponsive. It pings any server whose entry has an
ncomm_fails field in the range

1- sliv_c_max_server_not_listening

(currently 20). Initially, ping attempts are scheduled to happen at
15-minute (sliv_c_long_wait) intervals. However, if the first
ping fails, this interval is immediately reset to the
sliv_c_short_wait value (currently one minute). Upon com-
pletion of the maximum number of ping attempts (i.e., when
ncomm_fails=20), sliv_task2 sets the entry’s delete_flag
and goes on to the next entry on the list.

ping_server
This function is essentially a wrapper that calls
rpc_mgmt_is_server_listening with a specified “short
timeout” value (currently 3).

This two-task arrangement means that:
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• as long as every registered server is reachable, sliv_task2 will never run
• once one server fails to respond to a ping by sliv_task1, sliv_task2 will

begin to run and will not stop until every registered server has been declared
living. (I.e., no entries in the entry_list have an ncomm_fails > 0.)

The server liveness tasks traverse the endpoint database’s entry list, which is a lin-
ear list of all entries ordered by their registration time (essentially a FIFO list). In
practice, especially if there are more than a few entries, both server liveness tasks
will be examining the list at the same time. However, since sliv_task1 only
pings servers whose ncomm_fails = 0 and sliv_task2 only pings servers
whose ncomm_fails > 0, only one task should ever be pinging a given server at
a time.
Both of the server liveness tasks acquire the db_lock (endpoint database mutex
lock) before beginning their traversal of the database. To prevent the database from
remaining locked for long periods when there’s a lot of server liveness activity
going on, these tasks periodically release the lock so that new registrations and
unregistrations can take place.
Both of the server liveness tasks keep time by means of the standard system clock
(e.g., gettimeofday()) on Unix systems), rather than the clock and timer rou-
tines described on page 3-8.

Forwarding
Datagram RPC clients that have not yet established an endpoint at which to reach
the server with which they will communicate make use of a forwarding scheme in
which calls on a partially bound handle are transmitted to the rpcd, which looks up
a compatible server instance, then forwards the call to that server in a way that
makes it appear as though the call had originated at the original caller (rather than
at the rpcd). The client is able to obtain the server’s endpoint by examining the
first response packet returned by the server.
The endpoint database routines and the rpcd itself (rpcd.c) include some of the
machinery required to manage datagram RPC forwarding requirements. The high-
est level forwarding map function, fwd_map, in rpcd.c, invokes the *_fwd oper-
ations (epdb_fwd, llb_fwd) to build a list of forwarding addresses that the
datagram protocol service will use when forwarding a call, then decides what
action to take based on whether or not there are any compatible interfaces regis-
tered.
We discuss the mechanics of forwarding in the datagram protocol service’s run-
time on page 7-16.
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Chapter 6: Datagram Protocol Service, part I

The datagram protocol service is one of the two “protocol engines” in DCE 1.0.x
RPC. It is responsible for implementing all of the state machinery for connection-
less RPC as defined in the RPC AES, as well as the programming interfaces for
applications and for stubs.
In this chapter we provide an overview of the major datagram RPC protocol ser-
vice elements, then discuss:
• datagram RPC packets
• datagram RPC flow control
• activity UUIDs and related sequence and serial numbers
• the major datagram RPC data structures and their relationships

Datagram RPC Protocol Service Elements
DCE’s datagram RPC protocol supports various levels of call reliability, expressed
in the call semantics, over and above what is inherent in an essentially unreliable
datagram protocol such as the internet User Datagram Protocol (UDP/IP). For
example, support for at-most-once (non-idempotent) semantics implies an ability
to detect duplicate packets (packets that are part of “old” calls). Support for calls
whose arguments do not fit into a single packet requires reassembly of call “frag-
ments” at the server side of an RPC. Efficient client/server communications
requires protocol optimizations that can be employed when, for example, low net-
work traffic, high network reliability, and adequate local buffering and processing
power are available. But any sort of reliably at all requires that both sides of an
RPC be able to cope with situations in which the local machine, the remote
machine, and the network that ties them together are perhaps not operating flaw-
lessly.
The machinery that accomplishes all this in DCE 1.0.x RPC can be categorized
more or less as follows:
• packet structures (headers and bodies) that are tailored to the needs of the data-

gram RPC protocol.
• connection tables that allow clients and servers to keep track of outstanding

calls
• queues of marshalled data awaiting transmission, and queues of received data

awaiting delivery to stubs
• call handles that hold most of the state associated with a call
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• routines that deal with reassembly of call fragments and detection of duplicate
requests

• routines that adjust the flow (rate of transmission) of RPC packets to suit the
needs of client, server, and network (this includes retry logic)

• context handle and related liveness maintenance functions that allow servers to
maintain context on behalf of clients even during periods of nominal client
inactivity.

Figure 6-1 illustrates some of these major service elements.
Figure 6-1:Datagram RPC Protocol Service Elements

This functional taxonomy provides the basis for code modularity in the datagram
protocol service implementation — modularity that is evident in the names and
functional contents of the files listed here.
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dgccallt.c, dgccallt.h
routines that manage the client call table

dgcct.c, dgcct.h
routines that manage the client connection table

dgclive.c client liveness maintenance functions
dgclsn.c, dgclsn.h

client-oriented routines that run in the network listener thread
dgexec.c, dgexec.h

call execution machinery
dgfwd.c, dgfwd.h

call (packet) forwarding
dghnd.c, dghnd.h

binding handle manipulation
dginit.c initialization, declaration of epvs
dglossy.c

lossy-mode support, this is essentially a test/simulation facility
dglsn.c base network listener thread routines
dgpkt.c, dgpkt.h

packet rationing functions
dgrq.c, dgrq.h

receive queue management
dgscall.c, dgscall.h

server call handle management
dgsct.c, dgsct.h

server connection table management
dgslive.c, dgslive.h

server-side liveness maintenance routines
dgslsn.c, dgslsn.h

server-side listener thread routines
dgsoc.c, dgsoc.h

low-level datagram (IP) socket manipulation
dgutl.c, dgutl.h

utility functions
dgxq.c, dgxq.h

transmit queue management

Datagram RPC Packet Structure and Contents
The datagram RPC packet structures are defined in dg.h. There are several packet
types that have specialized body structures intended to promote efficient process-
ing. The datagram RPC packet header is common to all packet types.
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Datagram RPC Packet Types
Much packet processing is based on packet type. Packet types are associated with
call types, and call types are dictated by the needs of the dg RPC protocol. Each
packet type has an associated direction (client-to-server, server-to-client). Figure
6-2 illustrates packet types and directions.

Figure 6-2:Datagram RPC Packet Types and Directions

Here are brief descriptions of the types:
Client-to-server
request a (partial) RPC, an interface’s “in” arguments
ping a request for information about how a server is progressing with

call execution.
ack acknowledgment of packet receipt
quit a request to stop work on a call (roughly equivalent to an async

interrupt)
Server-to-client
response a (partial) RPC. an interface’s “out” arguments
fault an indication that the call generated a synchronous fault during exe-

cution in the server

rpc_c_dg_pt_request
rpc_c_dg_pt_ping

rpc_c_dg_pt_response
rpc_c_dg_pt_fault
rpc_c_dg_pt_working
rpc_c_dg_pt_nocall
rpc_c_dg_pt_reject

rpc_c_dg_pt_ack
rpc_c_dg_pt_quit

rpc_c_dg_pt_fack

rpc_c_dg_pt_quack

CLIENT SERVER
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working a response to a ping indicating that the server knows about a call
and is working on it

nocall a response to a ping indicating that the server has never heard of the
caller

reject a response indicating that a call has been rejected
quack “quit acknowledge,” an acknowledgment of receipt of a quit

request
Bidirectional
fack “fragment acknowledge,” acknowledgment that a fragment has

been received
The Datagram RPC Packet Header

The datagram RPC packet header is defined in dg.h. This structure, which we
illustrate inTable 6-1, is set up so that all of a packet header’s scalar data are natu-
rally aligned on eight-byte boundaries, which in turn allows efficient references to
header contents. The header itself is an integral multiple of eight bytes, as are the
packet bodies of all packets except those carrying the last fragment of a request or
response. This constraint ensures that no NDR scalar value will ever be split across
packet buffers, and allows the stub/runtime interface to reference packet contents
by simply returning pointers to the buffers in which they reside.
Some provisions have been made in the datagram protocol service implementation
for maintaining these alignment rules in the face of an architecture that does not
permit addressing at this level (i.e., is not “byte-addressable”). Such architectures
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are referred to in the code as “mispacked header” architectures, and are at least
partially supported.

Figure 6-4 may help the reader visualize the way this structure appears in memory.
More detail on some of the fields appears below.
_rpc_vers RPC version number (range 0>15). The DCE RPC accessor macro

that examines this field (RPC_DG_HDR_INQ_VERS) only examines
the low four bits, although the full eight-bit value is required for
NCS 1.5.1 compatibility. The “set” macro
(RPC_DG_HDR_SET_VERS) sets the four high bits to zero.

_ptype Packet type (range 0-31).The DCE RPC accessor macro that exam-
ines this field (RPC_DG_HDR_INQ_PTYPE) only examines the low
five bits, although the full eight-bit value is required for NCS 1.5.1
compatibility. The “set” macro (RPC_DG_HDR_SET_PTYPE) sets
the three high bits to zero.

Table 6-1: rpc_dg_pkt_hdr_t structure

rpc_dg_pkt_hdr_t {

_rpc_vers /* RPC version */

_ptype /* packet type (request, response, ...) */

flags /* packet flags */

flags2 /* more packet flags */

drep[3] /* sender’s data representation */

serial_hi /* high byte of packet serial number */

object /* object UUID */

if_id /* interface UUID */

actuid /* activity id (UUID) */

server_boot /* server boot time */

if_vers /* interface version */

seq /* sequence number of this packet */

opnum /* operation number within interface */

ihint /* interface hint (help locate interface
within server) */

ahint /* activity hint */

len /* length of packet body */

fragnum /* number of this fragment */

auth_proto /* authentication protocol to use */

serial_lo /* low byte of packet serial number */

}
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flags Some combination of:

With the exception of the call semantics fields (maybe, idempo-
tent, and broadcast, shaded in the table above), any combina-
tion of flags can be logically ORed together to make flags. Each
flag is associated with a specific call direction (client-to-server,
server to-client). See Figure 6-3 for details.

flags2 Some combination of:

rpc_c_dg_pf_ meaning
forwarded packet was forwarded
last_frag packet is last fragment of this

call
frag packet is a fragment of a call
no_fack don’t bother to send a fack

packet acknowledging this frag-
ment.

maybe call has maybe semantics
idempotent call has idempotent semantics
broadcast call has broadcast semantics
blast_outs outs can be “blasted.”

rpc_c_dg_pf2_ meaning
forwarded2 packet was forwarded in two

pieces
cancel_pending a cancel was pending at

call_end
reserved04 reserved
reserved08 reserved
reserved10 reserved
reserved20 reserved
reserved40 reserved
reserved0 reserved
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Figure 6-3: Packet Flags and Directions

drep Data representation. The actual ndr_format_t type defined in
ndrp.h is a four-byte value, two bytes of which are reserved (and
unused in DCE 1.0.x). Only (the low-order) three bytes of the
ndr_format_t are present in the datagram RPC packet header.

serial_hi, serial_lo
Packets associated with a given activity are serially numbered to
give the runtime a way to deal with retransmitted packets. The
serial number of this packet is the 16-bit value obtained by concate-
nating serial_hi and serial_lo. (The value is split in the data-
gram RPC packet header solely for alignment reasons.)

actuid a UUID that uniquely defines the activity (roughly analogous to the
call and any related callbacks) with which this packet is associated.

server_boot
The boot time of the server in which this call is being executed.
Each server records its boot time in a global value, which it applies
to all calls it services. Clients and servers use this value to distin-
guish between otherwise identical requests or responses. For exam-
ple, when a server is shut down and re-started, it may register
bindings that are identical to those registered by the shut-down
server instance. In such cases, examination of the boot_time
field of an incoming packet reveals whether it is really part of a call

rpc_c_dg_pf_forwarded

rpc_c_dg_pf_maybe

rpc_c_dg_pf_cancel_pending

rpc_c_dg_pf_idempotent

rpc_c_dg_pf_broadcast

rpc_c_dg_pf_last_frag

rpc_c_dg_pf_forwarded2

rpc_c_dg_pf_frag
rpc_c_dg_pf_no_fack

CLIENT SERVER
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that this server instance should execute.
if_vers Interface version (see page 3-32)
seq Sequence number within activity of the call with which this packet

is associated.
ihint Interface hint (see page 3-32)
ahint Activity hint, used as an index into the server connection table
len length of packet body
fragnum in request packets, this represents the call fragment contained in

this packet. In fack packets, this represents the number of the high-
est in-order packet seen by the sender (0xffff if no packets have
been seen yet). Set in rpc__dg_xmitq_elt_xmit.
Figure 6-4: Datagram RPC Packet Header Layout

Specialized Packet Body Types
DCE datagram RPC defines body structures for four specialized packet types. For
all other packet types, the body is simply an eight-byte aligned octet string (on the
wire). The specialized body types are:
error Error packet bodies, used in reject and fault packet types, consist of

a 32-bit error status (four octets on the wire).

object

_rpc_vers _ptype flags flags2 serial_hi

if_id

actuid

fragnum auth_proto serial_lo

0

8

16

32

48

64

24

40

56

72

drep

server_boot if_vers

seq opnum ihint

ahint len
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quit Quit packet bodies are used in cancel requests, and consist of a 32-
bit quit body format version identifier and a 32-bit cancel-request
event identifier.

quack Quack packet bodies consist of a 32-bit quack body format version
identifier, a 32-bit cancel-request identifier, and a boolean that indi-
cates whether or not the server is accepting cancels. A cancel
request generates a quit packet for a given cancel event id, the
response generates a quack packet with the same cancel event id.

fack Fack packet bodies (see Table 6-2) include information intended to
help a sender optimize transmission rates for future transmissions,
as well as packet serialization information on which clients and
servers base their decisions on whether and when to retransmit.
Fack packet bodies are also used in nocall packets as of

DCE1.0.2. In earlier versions of DCE RPC, nocall packets have
zero-length bodies.

Table 6-2: rpc_dg_fackpkt_body_t structure

rpc_dg_fackpkt_body_t {

vers /* version of fack packet body
*/

pad1 /* alignment padding */

window_size /* the receiver’s advertised
window size */

max_tsdu /* largest transport service
data unit (packet). No packet
larger than this can be pro-
cessed by the receiver */

max_path_tpdu /* largest transport protocol
data unit. Packets larger than
this will be subject to fragmen-
tation at the transport level */

serial_num /* serial number of the packet
that this fack acknowledges */

selack_len /* number of elements in the
selack array */

selack[1] /* array of 32-bit selective ack
masks */

}
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Figure 6-5: Specialized Packet Bodies

forwarded Forwarded packets include a “subheader” inserted between the
packet header and the original packet body. The subheader includes
the address and data representation of the original sender of the
packet. The receiver of a forwarded packet uses this information to
establish contact with the original sender. See page 7-16 for more
on forwarding.

Flow Control
Since a fair amount of the datagram protocol service’s data structure real estate is
occupied by information pertaining to flow control, it makes sense to digress for a
few pages here in an attempt to illuminate some of the guiding principals behind
the datagram RPC flow control methods and how those principals are put into
practice in the DCE 1.0.x RPC implementation.
Viewed at the highest level, the datagram RPC protocol attempts to maintain an
efficient, reliable logical connection between a client and a server using some
underlying datagram protocol which, by definition, does not provide reliable deliv-
ery of data. Doing this requires the datagram RPC protocol service to provide—at
a minimum—for acknowledgment of datagram receipt, along with the ability to
detect and retransmit lost datagrams and weed out retransmitted duplicates.
Datagram RPC flow control draws heavily on the TCP protocol described in Inter-
net RFC 793, and makes use of several modifications to the base TCP design sug-
gested by Jacobson [“Congestion Avoidance and Control,” Proceedings of ACM
SIGCOMM ’88]. That is to say, it includes the notion of a receiver’s advertised
window size (the amount of data that the receiver is able to buffer) and a conges-
tion window of variable size that is part of the per-connection state. Of course, the

error

quit

quack

fack

forwarded

status

vers cancel_id

server_is_accepting

vers

vers pad1 window_size max_tsdu

max_path_tpdu serial_num selack_len

selack[1]

cancel_id

len addr

drep

original packet body

(selack[2] ...)
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idea of per-connection state has to be coerced somewhat into applicability to a con-
nectionless protocol, but by substituting the word “call” for the word “connec-
tion,” most of other concepts can be made to fall into place. Specifically, datagram
RPC flow control is based on the TCP protocol’s idea of a transmission queue of
sequentially numbered elements that includes two elements of particular interest:
• an element with the highest sequence number transmitted but not yet acknowl-

edged. (This element is referred to as UNA in RFC 793, where it is simply a
byte. Its analogue in datagram RPC is the head element of the transmit queue.)

• an element that is the next in sequence to send. (RFC 793’s NXT element, and is
analogous to the first_unsent element of the datagram RPC transmit
queue.)

Given this layout, some number of additional queue elements can be sent before
the UNA/head is acknowledged. The total of these elements is based on the
“receive window” advertised by the receiver. If there are more elements in the
queue, they cannot be sent until after UNA/head is acknowledged. The datagram
RPC protocol service constrains the number of elements actually sent using a
“slow start” algorithm as much like the one described by Jacobson. As illustrated
in Figure 6-6, the initial transmission in a call consists of one packet. On receipt of
the first fack from the receiver, the sender doubles the size of the congestion win-
dow. This process continues until either the maximum receive window size is
reached or packet loss is detected.
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Figure 6-6: Congestion Window Growth

Data loss (or lack of it) during transmission has a lot to do with the flow control
strategy. Datagram RPC manages flow control in a TCP-like manner under low/
no-loss conditions. As things begin to get more “lossy” (that is to say, as more and
more packets start getting lost in transmission), the strategy diverges somewhat
from that employed by TCP.

Flow Control on an Error-Free Connection
The runtime maintains, in the transmit queue structure, flow-control-related values
for (among other things) the receiver’s advertised receive window, the current con-
gestion window size, and the number of fragments (queue elements) that have
been sent but not yet acknowledged. With every incoming fack, we dequeue the
acknowledged fragments, slide the remaining queue elements “to the left,” and
increase the congestion window by twice the number of elements dequeued. As a
result, the actual congestion window always equals the nominal congestion win-
dow size plus the number of fragments sent but unacknowledged.
This division of the actual “next send count” into two parts allows better manage-
ment of situations in which back-to-back facks are received. It also allows the run-
time to take advantage of a selective acknowledgment algorithm that improves
performance but can result in a transmit queue that does not consist of contiguous
blocks of data.
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Flow Control Under Lossy Conditions
When packets start getting lost in transmission, the datagram protocol service
responds by invoking its selective acknowledgment scheme, which allows it to
maintain the largest possible congestion window even in the face of a lossy con-
nection. This scheme is based on the knowledge that the RPC runtime manages
both the client and server sides of a connection, and can therefore transmit and
receive out-of-order packets in way that, say, TCP cannot. (With a TCP connec-
tion, the first lost packet effectively collapses the congestion window back to one-
packet size, since the entire congestion window must be retransmitted.) It also
makes use of the idea that transmissions are also subject to a certain amount of net-
work buffering that should be included in the computation of a receiver’s window
size.
Selective Acknowledgment
In addition to the expected acknowledgment of in-order data received, datagram
RPC fack packets may also include information acknowledging any out-of-order
packets received. This array of “selective acks” allows the sender to dequeue pack-
ets within the current congestion window regardless of the order in which they had
been enqueued. This in turn allows the sender to refill the transmit window with
new packets, keeping the transmit pipeline full at the marginal expense of some-
what more complicated fack processing.
Selective acks take the form of 32-bit masks describing each received packet as an
offset from the (highest-numbered in-order) packet being acknowledged in the
fack. Figure 6-7 illustrates a simplified case where several packets are dropped
after flow has reached a steady state for a receive window of 10. In this example,
the selective ack mask associated with the fack of fragment 20 (the highest-num-
bered in-order fragment received) has a value 0x36 (110100 binary), signifying
that the receiver has also gotten lower-numbered packets at offsets of 3, 5, and 6
from the fragment nominally being facked. The number of selective ack masks
included in a selack array is determined by the highest-numbered fragment (in-
or out-of-order) the receiver has seen so far.
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Figure 6-7: Selective Acknowledgment

Packet Serialization
The transmitter assigns each packet a unique serial number before transmitting it.
These serial numbers are unique on a per-queue basis. The first packet transmitted
has serial number 0. Upon receipt of a fack request, the receiver returns a fack
packet to the sender that includes the serial number (serial_num) of the packet
that induced the fack. The sender can safely assume that all packets still on the
transmit queue that have serial numbers lower than serial_num and are not men-
tioned in the fack body’s selective ack masks have been lost.
Retransmission Strategy
The need to retransmit packets is usually detected during fack processing, but may
also be detected in routines that process nocall and ping packets, and by routines
run in the timer thread. The transmit queue includes a pointer to a retransmit queue
on which these routines place packets that need to be retransmitted. The actual
retransmission is handled in the main transmission routines, since retransmitted
packets have to fit within the current congestion window, which is managed by
these routines.
The retransmit queue itself is temporary in the sense that nobody ever holds a write
lock on it. The RPC runtime assumes that any function operating on the retransmit
queue contents must have the latest data on what needs to be retransmitted.
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The Packet Pipeline
The datagram RPC code has the notion of a packet pipeline that is constrained by
the receiver’s advertised window size as well as by some amount of network buff-
ering that can be measured in packet round-trip time (RTT), which we define as the
interval between the transmission of a packet and acknowledgment of its receipt. It
is quite possible for RTTs to be insignificant in comparison with receiver buffering
capacity and/or the transmitter’s ability to stuff packets on the transmit queue.
Nevertheless, the designers of datagram RPC have observed that there are enough
cases where network buffering is a significant help to RPC performance to justify
adding transmit logic that takes RTTs into account.
The contents of the packet pipeline can be described in terms of:
• The current blast size, which is the number of packets that the sender will send

back-to-back (i.e., without asking for an explicit per-packet ack). Blast size
varies with network congestion and receiver responsiveness, going down when
either of these begin to show signs of trouble.

• The number of outstanding fack requests, which is the total of all packets sent
in an attempt to induce a fack. Fack requests are managed in a way that allows
acceptable redundancy in the detection of lost packets without incurring too
much “backward traffic” from the receiver to the sender.

Blast size and outstanding fack requests interact in several ways:
• Backward traffic can be decreased by increasing the blast size and decreasing

the number of outstanding fack requests. An optimal mix of these two values
occurs when the blast size equals the receive window and the number of out-
standing fack requests never goes above one.

• Calls can be made less susceptible to time-outs (which result when all fack
requests and/or their corresponding facks are lost in transmission) by increas-
ing the number of outstanding fack requests per-RTT. The most conservative
approach, of course, is to request a fack for every packet sent.

• Packets can be spaced most uniformly within the packet pipeline (something
that could theoretically make packet processing easier for busy receivers) by
interspersing blasts and fack requests in way that keeps the number of out-
standing fack requests somewhere between the maximum and minimum values
we’ve described.

In practice, the packet pipeline is made to grow using the congestion window
method described in Figure 6-6, and the RTT is monitored by noting the time it
takes for the initial and subsequent facks to arrive at the sender. At each stage of
congestion window growth after the first (one-packet stage), the transmission logic
sends two congestion windows of packets, requesting a fack after each window.
This provides desirable fack redundancy at the cost of slowing the growth of the
pipeline somewhat. It also seeks to limit the size of each blast in a way that makes
best use of network buffering (the number of blasts per RTT is kept high by keep-
ing the number of fack requests per RTT high).
Packet transmission proceeds like this:



Revised 7/27/93 Datagram Protocol Service, part I

Copyright  1993 Open Software Foundation 6-17

• Upon receipt of a fack, the sender checks the serial number and selective ack
information to find out how many packets the fack is actually acknowledging

• The sender then computes a new blast size of twice the number of packets
being facked.

• The sender adjusts the new blast size if necessary to fit into the receive win-
dow.

• If the total number of packets required for the blast are available for transmis-
sion (i.e., are on the transmit and/or retransmit queues), the sender transmits
them. If not, the sender reduces the blast size to the number of packets avail-
able.

• If there are more packets to send, the process begins again.
The local idea of window size is based on several constants defined in dg.h, along
with a computation using the value returned from the host operating system in
response to a request for a specific amount of buffering. The constants include a
maximum window size and a “socket load” factor that represents the number of
simultaneous calls we expect a socket to handle and how many fragments (pack-
ets) each call will require. We make the further assumption that we can establish
send buffering adequate to the needs of a receiver with the same amount of receive
buffering we believe the local environment provides (i.e., send buffering is initially
consistent with our advertised receive window).

Activity IDs, Fragment, Sequence, and Serial Numbers
Every datagram RPC packet header includes, as we’ve described, fragment,
sequence, and serial numbers, as well as an activity UUID. These four values pro-
vide the means of associating a packet with a call, and of detecting duplicate
receives.
• Activity UUIDs and sequence numbers are the key to associating calls with

logical connections. A given pairing of activity UUID and sequence number is
guaranteed unique for all packets associated with a given RPC. Activity
UUIDs can be reused, which is why we need sequence numbers to distinguish
among instances of activity UUID reuse. Each re-use of an activity UUID
increments the sequence number. Calls made with a given activity UUID
always have the same authentication information, and servers cache per-activ-
ity state for reuse in executing subsequent calls with the same activity UUID.

• Fragment numbers increase monotonically per packet for calls whose argu-
ments cannot all fit in a single packet.

• Serial numbers are unique per packet, and are part of the datagram protocol
service’s retransmission and duplicate-detection machinery. When a packet is
transmitted, it gets the “next serial number” associated with its transmit queue.
If it needs to be retransmitted, it is put on the transmit queue’s retransmission
queue and given a new serial number.
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Taken together, these values ensure that every datagram RPC packet is unique, and
let servers start up call execution with minimal overhead (no need to perform a
WAY callback) when activity UUIDs are re-used.
Figure 6-8 should help sort out the uses of these four values.

Figure 6-8: Activity ID, Fragment, Sequence, and Serial Number

Major Datagram Protocol Service Data Structures
There are a number of important data structures that more or less define calls and
logical “connections” between clients and servers. Since the structures themselves
are closely interrelated, we will describe them all in this section, even though
many of the functions that reference these structures’ contents will be detailed
later.

Reference Counts
Many of the datagram RPC service’s data structures include a field named
refcnt, which is the structure’s reference count. Reference counts provide an
auxiliary locking mechanism used in conjunction with mutex locking to protect
heap-allocated critical data needs to be locked for “long” intervals — long enough
to make it inefficient to simply mutex lock the entire structure for the entire time—
or that needs to be temporarily unlocked by a lock-holder that needs to acquire a
higher-level lock. Reference counts provide a way of guaranteeing that a structure
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of interest will not be freed even though the interested party may not have it
locked.
Reference counts for, say, a dummy_t structure are typically used as shown in Fig-
ure 6-9.

Figure 6-9: Using Reference Counts

MUTEX_LOCK(dummy)
fiddle_with (dummy->member)
dummy->refcnt++ /* grab a reference */
MUTEX_UNLOCK(dummy)
/********************************
** do some long-running chore **
********************************/
MUTEX_LOCK(dummy)
fiddle_with (dummy->member)
dummy->refcnt-- /* free our reference */
/* now call a “release” function, which
** does something like this:
*/
if (dummy->refcnt == 0); {

free (dummy);
else

MUTEX_UNLOCK(dummy);
}

The mechanism is simple, consisting of an integer member that all functions with
an interest in the structure’s contents agree to increment when examining or alter-
ing the structure and decrement when they’re done. Structures with a refcnt==0
are assumed to have no readers and may be freed. (The implementation provides a
release function that should be called to examine a structure’s refcnt field and do
the right (UNLOCK/free) thing.) Rules for using reference counts can be summa-
rized as:
• Functions that examine reference-counted data structures should return with

the entry locked and the reference count incremented.
• Functions that need to grab or release a reference must lock the referenced

structure first.
• Once a function has released its reference to a structure, it cannot reference

structure elements again without first re-acquiring a reference.
Transmit and Receive Queues

Transmit and receive queues are queues of elements that are essentially pointers to
headerless packets. Each queue element includes flags, an activity UUID, and
sequence, serial, and fragment numbers from which call transmit functions con-
struct a packet header that is prepended to the packet prior to transmission.
Transmit Queues and Queue Elements
Transmit queue elements and transmit queues are defined in dg.h. Individual
queue elements, as illustrated in Table 6-3, are subject to whatever locking require-
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ments apply to the queue on which they reside. If they do not yet reside on a queue,
they need not be locked.

Table 6-3: rpc_dg_xmitq_elt_t

rpc_dg_xmitq_elt_t {

*next /* pointer to next elt */

*next_rexmit /* pointer to next elt on rexmit queue */

flags /* pkt hdr flags */

fragnum /* pkt hdr fragnum */

serial_num /* pkt hdr serial number */

body_len /* sizeof (body) */

body /* pointer to body of this element */

in_cwindow /* true iff body is part of the current
congestion window */

}
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The transmit queue itself is a large structure that includes, in addition to the requi-
Table 6-4: rpc_dg_xmitq_elt_t structure

rpc_dg_xmitq_t {

head /* pointer to first pkt on queue */

first_unsent /* pointer to first unsent pkt on
queue */

tail /* pointer to last pkt on queue */

rexmitq /* pointer to first pkt on retrans-
mission queue */

part_xqe /* pointer to partially-filled pkt */

hdr /* prototype packet header */

awaiting_ack_timestamp /* when awaiting_ack field was set */

timestamp /* most recent (re)xmit time */

rexmit_timeout /* how long until next rexmit */

base_flags /* flags field for all pkt hdrs */

base_flags2 /* flags2 field for all pkt hdrs */

next_fragnum /* fragnum for next pkt hdr */

next_serial_num /* serial_num for next pkt hdr */

last_fack_serial /* serial number of pkt that induced
most recently-received fack */

window_size /* receive window size (pkts) */

cwindow_size /* congestion window size (pkts) */

max_tsdu /* largest pkt we can send through
the local transport API */

max_path_tpdu /* largest pkt that won’t get frag-
mented on the wire */

max_pkt_size /* min of max*t*du above */

blast_size /* current blast size */

max_blast_size /* maximum allowable blast size */

xq_timer /* schedules adjustments to blast
size */

xq_timer_throttle /* how much to delay next blast */

high_cwindow /* largest congestion window seen */

freqs_out /* number of outstanding fack
requests */

push /* false == keep at least one pkt

awaiting_ack /* true if we’re waiting for an ack
*/

}
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site element pointers, all the information needed to initialize packet headers and to
manage flow control. Table 6-4 describes the fields of this structure. Additional
information on certain fields follows.
rexmitq pointer to the head of the retransmit queue
part_xqe pointer to a partially-filled queue element
awaiting_ack, awaiting_ack_timestamp

These values are used to help determine whether a receiver has
died. awaiting_ack is set true by any routine that transmits a
packet expected to induce an acknowledgment. acknowledgment
can consist of a working, fack, ack, or response packet.

timestamp rpc_clock_t when the most recent transmission was made
rexmit_timeout

Interval to wait before retransmitting, Retransmission is typically
deferred until timestamp+rexmit_timeout has been reached.

base_flags, base_flags2
The first of these values is logically ORed with a queue element’s
flags value to produce the flags field in the packet header. The sec-
ond is simply applied to the header as flags2.

next_fragnum
The next fragment number to use. Initialized to zero for the first
packet of a call. Incremented for each subsequent packet in the call.

next_serial_num
The next serial number to use. Initialized to zero for the first packet
in the queue. Incremented for each packet transmitted or retransmit-
ted.

last_fack_serial
Serial number of the packet that induced the most recently received
fack. Used when setting blast size.

max_tsdu, max_path_tpdu, max_pkt_size
We want to send the largest packet we can that will not be subject to
fragmentation not under our control (e.g., IP fragmentation on the
network), so we set max_pkt_size to the smaller of max_tsdu
and max_path_tpdu.

max_blast_size, xq_timer, xq_timer_throttle, high_cwindow
These four fields are used in determining how many packets to send
in a blast (blast_size). When a connection is reliable (no lost
packets) and round-trip times are short, our flow control logic may
not allow the congestion window to grow as fast at it could. Under
such conditions, max_blast_size may be periodically adjusted
at intervals controlled by the xq_timer, which is set to the number
of “good” facks that must be received before upping
max_blast_size. The initial value of xq_timer is 8. To prevent
oscillation around a given max_blast_size, xq_timer is reset
to (xq_timer_throttle * xq_timer) after each increase of
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max_blast_size.
push set true when all queue elements—even those that are partially

filled—should be transmitted. In DCE 1.0.2, it is always true.
Receive Queues and Queue Elements
Receive queue elements (Table 6-5) are essentially received packets embellished
with some additional information.

Here’s some additional information on some of the receive queue element’s fields.
hdrp, hdr hdrp is a pointer to the header as it was received. hdr is a pointer

to a dummy structure laid out by the local compiler, into which val-
ues from hdrp are plugged. When possible (i.e., when the local and
remote layouts are the same), hdrp points directly to pkt->hdr,
saving a data copy.

pkt, pkt_real
pkt_real points to a buffer that has been allocated to hold the
packet as it arrived from the sender. pkt points to a copy of
pkt_real that has been aligned on a (0 mod 8) boundary, which
the stubs require. All processing of received packets uses pkt, not
pkt_real.

was_rationing, low_on_pkts
These two values are used by the packet rationing code to deter-

Table 6-5: rpc_dg_recvq_elt_t structure

rpc_dg_recvq_elt_t {

*next /* pointer to next queue element */

hdrp /* pointer to “usable” pkt hdr */

hdr /* properly-aligned *hdrp */

sock /* where to send response (rpc_socket_t) */

from_len /* length of .from field */

pkt_len /* length of raw packet as received */

from /* rpc_addr_t of sender */

was_rationing /* sender was rationing packets when this
one was allocated */

low_on_pkts /* sender was low on packets when this one
was allocated */

pkt /* offset to beginning of pkt (gets us
through any alignment padding) */

pkt_real /* pointer to actual start of received
packet */

}
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mine how large a receive window to advertise. Systems that are
rationing packets are never allowed to queue more than one packet
at a time, and so set their window_size to 1.

Receive queue elements are subject to whatever locking is in effect on the queues
on which they reside. Beyond that, they have no locking requirements.
Receive queues (Table 6-6) organize queue elements so that they can be efficiently
delivered, in order, to the stubs.

Elements are dequeued from the head of the queue. Element ordering on the queue
is based on fragment number (the lowest-numbered packet is first in the queue).
Other useful per-field information includes:
last_inorder

If this field is NULL, then there is either a gap at the head of the
queue or the queue is empty.

next_fragnum, high_fragnum, high_serial_num
Queue organization functions use these values to determine the
order in which to insert a a new queue elements.

Table 6-6: rpc_dg_recvq_t structure

rpc_dg_recvq_t {

head /* pointer to first queue element */

last_inorder /* pointer to highest-numbered in-order
queue element */

next_fragnum /* next in-order fragment we want to see
*/

high_serial_num /* highest serial number seen so far */

window_size /* receive window size (pkts) */

wake_thread_qsize /* number of elements to enqueue before
waking up the executor thread */

queue_len /* number of elements in the queue */

inorder_len /* total number of contiguous (in-order)
element in the queue */

recving_frags /* true iff we are still enqueueing frag-
ments */

all_pkts_received /* true iff we’ve received all data pkts
for this call */

is_way_validated /* true if this connection has survived
who-are-you callback validation */

}
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Client and Server Connection Tables
These tables provide the state needed to maintain a “connection” over a connec-
tionless protocol.
Client Connection Table and Table Elements
The Client Connection Table (CCT) is a hash table of Client Connection Table Ele-
ments (CCTEs) that provide a client with information on connection to remote
servers. Each CCTE is keyed by a call’s authentication information. Since a dis-
cussion of authenticated RPC is beyond the scope of this document, we will
assume that this is opaque data that is “always correct.” The base CCTE is defined
in dg.h and illustrated here in Table 6-7.

The CCT itself is simplya separately-chained hash table referenced through the
structure illustrated in Table 6-8.

Table 6-7: rpc_dg_cct_elt_t structure

rpc_dg_cct_elt_t {

*next /* pointer to next element in hash chain */

auth_info /* pointer to auth info for this call */

key_info /* auth key */

*auth_epv /* pointer to auth epv */

actid /* activity ID */

actid_hash /* uuid_hash(actid) */

seq /* sequence number to use in next call */

timestamp /* last time this CCTE was used in a call */

refcnt /* number of references to this CCTE */

}

Table 6-8: rpc_dg_cct_t structure

rpc_dg_cct_t {

gc_count /* number of times this table has been gar-
bage-collected */

t /* a two-element structure with pointers to
the first and last CCTEs:
struct {

rpc_dg_cct_elt_p_t first;
rpc_dg_cct_elt_p_t last;
} t

*/

}
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CCTEs are re-usable and also garbage-collectable. Actual references to a CCTE
are made through a “soft” pointer that includes a gc_count field (Table 6-9).

The CCTE reference is considered valid if the soft pointer’s gc_count matches
that of the cct_t on which the element resides.
Each CCTE has a refcnt field that is incremented by every object that believes it
is holding a reference to the element. This includes, at a minimum, a reference held
by the CCT itself, as well as the reference to the CCTE held by the call. When a
client wants to make a call, it first looks for a CCTE with an auth_info field that
matches the client’s auth_info and a refcnt==0. If it finds one, it increments
the reference count (declaring the CCTE in use), then increments the sequence
number and makes the call using the CCTE’s activity UUID. If the client cannot
find a matching CCTE, it creates one, generating a new activity UUID and setting
the auth_info field. CCTEs are chained onto the tail of the CCT, which means
that clients, in their search for a CCTE to use, examine the oldest entries first,
which improves their chances of finding a free CCTE.
Server Connection Table and Table Elements
The Server Connection Table (SCT) is a hash table of Server Connection Table
Element (SCTE) structures that provides the basis for demultiplexing received
packets based on activity/sequence data. It also maintains a cache of call state (e.g.
auth_info) for re-use by calls with the same activity UUID. Servers keep this
information in a single table (as opposed to clients, who store analogous informa-
tion in the CCT and the CCALLT) to optimize their frequent dealings with newly-
arrived requests from previously unheard-of clients. When this happens, the server
only has to manage lookups/inserts on a single table. (Clients, we assume, always
know the source of any request packets with which they have to deal.)

Table 6-9: rpc_dg_cct_elt_ref_t structure

rpc_dg_cct_elt_ref_t {

*ccte /* pointer to CCTE, valid iff
gc_count (below) == CCT->gc_count */

gc_count /* number of times we think the table con-
taining this entry has been GC’d */

}



Revised 7/27/93 Datagram Protocol Service, part I

Copyright  1993 Open Software Foundation 6-27

SCTEs are added to the SCT by the network listener thread. The SCT and all its

elements are protected by the RPC global mutex. Table 6-10 illustrates an SCTE.
Additional useful information on SCTE fields:
high_seq, high_seq_is_way_validated

Servers attempt to maintain sequence number information that
accurately reflects the information held by the client (whose idea of
a call’s sequence number is always correct), since they need this
information to maintain the integrity of non-idempotent call seman-
tics. Since this information is only approximate (the server does not
always see every call the client makes, nor is the client required to
increase the sequence number by 1 on successive reuses of an activ-
ity UUID), we assume that the server’s idea of call sequence is only
approximate until it has executed a Who Are You (WAY) callback
to the client to validate/correct it. See page 7-20 for more informa-
tion on WAY callbacks and the conversation manager.
When an SCTE is created, in response to the arrival of a request

Table 6-10: rpc_dg_sct_elt_t structure

rpc_dg_sct_elt_t {

*next /* pointer to next elt in hash
chain */

actid /* activity UUID */

ahint /* activity hint (from pkt
header), used as the index of
this SCTE */

high_seq /* highest sequence number yet
seen for this actid */

high_seq_is_way_validated /* true if high_seq above has
survived WAY validation */

refcnt /* reference count, always >= 1,
since the SCT itself holds a
reference */

key_info /* auth key information */

*auth_epv /* pointer to auth epv */

scall /* pointer to server call handle
for this call */

timestamp /* last time this SCTE was used
by a call */

client /* pointer to client call handle
*/

}
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fragment bearing an activity/sequence pair that the server hasn’t
previously seen, it’s high_seq member is initialized to

((fragment->seq)-1)

which represents the value that an existing SCTE for that activity
would have had before that fragment was received. At any instant,
high_seq represents the highest sequence number associated with
any call:
• executed by the server, or
• accepted for potential execution on the basis that its sequence
number is greater than high_seq (acceptance resets high_seq to
the new value), or
• that acknowledges a WAY callback.
No call may be executed unless the server’s and client’s idea of
high_seq have been synchronized via a WAY callback. Once this
has happened, high_seq_is_way_validated is set true.

scall This pointer to the scall structure (Table 6-14, page 6-35) associated
with a call that is currently using this connection. If the scall’s
call_seq value matches this SCTE’s high_seq value, then this
SCTE represents the connection’s current (or just-completed) call.
Otherwise, the SCTE is just caching auth and activity information
in anticipation of later re-use.

Client and Server Call Handles
Call handles are the logical representations of RPCs in the client and server
address spaces. They hold all of a call’s state, by which we mean both the formal
states defined in the datagram RPC state tables and the informal (though volumi-
nous) collection of information required to actually execute the call.
Call handles have several parts:
• A common call handle structure that includes information common to all RPC

protocols.
• A per-protocol call handle structure that includes information common to both

client and server call handles for a given protocol.
• Client and server call handle structures made up of the structures described

above as well as additional information useful only to clients or servers.
Figure 6-10 describes this hierarchy. Note that the arrows do not signify pointer
relationships. This is a hierarchy of member types.
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Figure 6-10: Call Handle Structures

Common Call Handle Structure
The common call handle structure is defined in com.h. We illustrate it in Table 6-
12. Note that in com.h, the client/server union u is defined in-line, as is the
u.server.cancel structure, which made it necessary for us to take a few stylis-
tic liberties in deriving our illustration.
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Table 6-11: rpc_call_rep_t structure

Common Datagram RPC Call Handles
The portion of a call rep that is common across datagram RPC clients and servers
is defined in dg.h. In conjunction with several fields of the transmit queue’s pro-
totype packet header (Table 6-1), it holds the bulk of the per-call state. Most of the
fields in this structure are protected by the call handle’s mutex. We’ll describe
exceptions to this rule when we discuss individual members.

rpc_call_rep_t {

link /* list of which we are a member */

m /* mutex that protects us */

protocol_id /* protocol id, used to dispatch the
call to the appropriate protocol’s
call epv */

is_server /* discriminator for server/client
union “u”, true iff this is a server
call handle */

u /* beginning of client/server informa-
tion (a union type) */

u.server /* server arm of the union */

cancel{ /* cancel info structure */

accepting /* true iff accepting cancels */

queuing /* true iff queuing cancels */

had_pending /* true iff call thread has a cancel
pending (queued) */

count /* number of cancels posted to call
thread */

} /* end of cancel info */

cthread /* thread-private data */

u.client /* client arm of union */

dummy /* no client-only data (yet) */

}
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Table 6-12 illustrates the common datagram RPC call handle.
Table 6-12: rpc_dg_call_t structure

rpc_dg_call_t {

c /* common portion (rpc_dg_call_rep_t)
*/

*next /* pointer to next element in hash
chain */

state /* FSM state of the call */

status /* current error status of the call */

state_timestamp /* when .state was last changed */

cv /* the call’s condition variable */

xq /* the calls transmit queue */

rq /* the calls receive queue */

*sock_ref /* pointer to socket pool elt */

actid_hash /* uuid_hash(acitivty_uuid) */

key_info /* auth key info */

*auth_epv /* pointer to auth epv */

addr /* rpc_addr_t of (client/server) */

timer /* call timer */

last_rcv_timestamp /* when we last added a pkt to .rq */

start_time /* rpc_clock_t when call started */

high_seq /* current sequence number */

*pkt_chain /* pointer to list of XQEs */

com_timeout_knob /* the big knob */

refcnt /* count of references to this call */

stop_timer /* true iff timer routine should die
after next execution */

is_cbk /* true iff this call was created spe-
cifically to do a callback */

has_pkt_reservation /* true iff the call has a packet pool
reservation */

0 /* alignment padding*/

is_in_pkt_chain /* true iff the call is waiting for an
XQE to free up */

0 /* alignment padding*/

}
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3-83-8Here’s some more information on specific structure elements.
*next This value is protected by whatever locking mechanism is used by

the data structure of which the call handle is a member.
state This field describes which of the states of the datagram protocol

Finite State Machine the call is currently assumed to be in. Possible
values are:

status This this the current status code, the one most recently returned by
whatever piece of call transmission/execution machinery is run-
ning.

cv This condition variable is used in conjunction with the mutex field
(in the common part of the call handle) to signal waiters that the
call handle has changed (e.g., xq or rq have new data).

xq The call’s transmit queue. Several values that are logically part of
the call itself are stored in the transmit queue’s prototype packet
header as an optimization and referenced through this member.
They are defined as:

*sock_ref Every call must hold a reference to a socket pool element. This is
the pointer to that element for this call.

timer This call’s timer routine (see page 3-8).
high_seq We track this per-call so that in the event this call is a callback and

it times out, we can still begin a new call with the appropriate
sequence number. This value can be incremented by wither receiv-
ing a request packet with this call’s activity UUID, or by receiving a
response packet with a higher high_seq.

*pkt_chain, has_pkt_reservation, in_pkt_chain
These values are used by the packet rationing code to determine

rpc_e_dg_cs_ meaning
init initialized and in use
xmit in use, sending data
recv in use, awaiting data
final in use, ack pending
idle not in use
orphan in use, waiting to exit

call_actid xq.hdr.actuid
call_object xq.hdr.object
call_if_id xq.hdr.if_id
call_if_vers xq.hdr.if_vers
call_ahint xq.hdr.ahint
call_opnum xq.hdr.opnum
call_seq xq.hdr.seq
call_server_boot xq.hdr.server_boot
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whether the call has a reservation
(has_pkt_reservation==true) and, if it does, whether it actu-
ally has been allocated a packet. We discuss packet rationing on
page 7-25.

com_timeout_knob
Every call includes a 32-bit timeout value known as the “timeout
knob,” since it should be thought of as conferring not an absolute
timeout value on the call, but rather a relative (e.g., “none, short,
medium, long, forever”) value. The actual values are specified in
dgxq.c. The default value is 30 “rpc clock seconds.”

Client Call Handle
The client-specific part of a datagram call handle is the repository for information
associated with a single binding handle and a single CCTE. It provides the data
needed to manage an in-progress call, and also serves as a cache for data that is
likely to be associated with a new call that re-uses this call’s activity UUID. The
call handle is initialized with interface id, hint, and operation number data at the
start of each new call. Changes in a call’s binding handle (e.g., new object UUID,
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new server endpoint) need to be reflected in updates to the client call handle. Table
6-13 describes this structure.

More data on various fields:
ping This references an rpc_dg_ping_info structure, defined in

dg.h, that records data used by the client ping logic.
quit This references an rpc_dg_quit_info structure, defined in

dg.h, that records data used in client quit processing.
cancel This references an rpc_dg_cancel_info structure, defined in

dg.h, that records data used in client quit logic.

Table 6-13: rpc_dg_ccall_t structure

rpc_dg_ccall_t {

c /* rpc_dg_call_t, common to all dg
call handles */

fault_rqe /* pointer to fault packet on receive
queue */

reject_status /* status from any reject pkt we’ve
received */

cbk_start /* true iff we’re starting a callback
*/

response_info_updated /* true iff ahint, ihint, high_seq
have been updated from values in a
response pkt */

server_bound /* true iff we have a server binding
*/

cbk_scall /* true if this is the client half of
a callback pair */

ccte_ref /* CCTE soft reference (see Table 6-9)
*/

*h /* pointer to binding handle on which
this call was made */

ping /* a ping info structure */

quit /* a quit info structure */

cancel /* a cancel info structure */

timeout_stamp /* max call execution time */

}
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Server Call Handle
The server-specific part of a datagram RPC call handle links a call to its binding
handle and also to the client half of any callback the server made in the course of
executing this call.

Data Structure Relationships
At this point, we have described all of the major data structures that are part of the
datagram RPC protocol service. These data structures are grouped functionally
into what can be described as Client Control Blocks and Server Control Blocks,
each of which include many of the same basic elements. Figure 6-11 and Figure 6-
12 are intended to provide a detailed view of the structural relationships sketched
out in Figure 6-10. Most of the functions that reference client or server call handles
do so via the rpc_dg_binding_client and rpc_dg_binding_server struc-
tures. These structures are fairly uncomplicated, so we will dispense with the usual
illustration in the hope that Figure 6-11 and Figure 6-11 will do the trick.

Table 6-14: rpc_dg_scall_t structure

rpc_dg_scall_t {

c /* rpc_dg_call_t, common to all dg call
handles */

fwd2_rqe /* pointer to the first half of a two-
part forwarded pkt */

*scte /* pointer to the SCTE representing this
call */

*cbk_call /* pointer to the client half
(rpc_dg_ccall_t) of a callback */

*h /* the binding handle associated with
this call */

client_needs_sboot /* true iff client does not yet know
server boot time (no WAY has occurred) */

call_is_setup /* true iff we have spawned a cthread for
this call */

call_executor_ref /* true iff the call has been given an
executor thread reference */

}
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Figure 6-11: Client Datagram RPC Data Structure Relationships
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Figure 6-12:Server Datagram RPC Structure Relationships
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Chapter 7: Datagram Protocol Service, part II

In this chapter we discuss:
• the relationship of the datagram RPC protocol state machine to the actual

implementation, and describe the relationship between call states and packet
processing.

•  common, client, and server routines that run in the network listener thread.
• forwarding
• liveness monitoring
• the Conversation Manager

Call Handle States
As we’ve described, the datagram RPC protocol service defines half a dozen states
in which a call can legally reside. The local (client or sever) process’s idea of the
call’s state is recorded in the call handle’s state field. This field is written and/or
read by many of the internal datagram RPC protocol service functions we describe
in the next section, and is link between protocol service operations and the formal
Finite State Machine on which the protocol is based. It also is the primary gover-
nor of call handle re-use and/or garbage collection, since only handles in the idle
state may be re-used or freed.
Before going into the details of how the datagram RPC protocol service actually
implements the state transitions defined in the AES, we want to introduce two state
diagrams derived from sketches in dg.h. These diagrams provide a local view of
the workings of the state machinery as expressed in the transitions of the state
member of the call handle. Note that, while these diagrams are not identical to the
ones provided in Chapter 10 of the AES, they are functionally equivalent from the
protocol perspective.

Client Call Handle State Transitions
Figure 7-1 describes client-side state transitions and associates each transition and/
or state with an internal function. There are three fundamental paths through the
various states (not all of which are part of every call).
• A call with maybe semantics needs only to be transmitted and (effectively) for-

gotten about, so the client call handle transitions from init to xmit, then reverts
to the idle state awaiting re-use.

• Idempotent calls need to spend some time in the recv state and will exit only
after receiving an ack.
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• Non-idempotent calls or idempotent calls with multi-packet (sometimes
referred to as “large”) out arguments transition into a final state awaiting a
delayed ack before reverting to idle.

For all paths through the client, transmission of a quit request effectively orphans
the call on the client side, after which the client will transition to idle upon receipt
of a quack from the server.
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Figure 7-1: Client Call Handle State Transitions

Server Call Handle State Transitions
Figure 7-2 describes server-side state transitions and associates each transition
and/or state with an internal function. As with the client side, there are three funda-
mental paths through the various states (not all of which are part of every call). In
addition, any of the paths is subject to immediate transition to the idle state if the
client fails the Who Are You (WAY) callback.
• A call with maybe semantics needs only to be received and delivered to the

stub for potential execution.

idle

init

orphan

xmit

idle

init

orphan

xmit recv

idle

init

orphan

xmit recv final

m
ay

be
id

em
po

te
nt

 w
ith

no
n-

id
em

po
te

nt
la

rg
e 

“o
ut

s”
id

em
po

te
nt

ccall_reinit()

rpc__dg_call_transmit_int()

rpc__dg_call_transceive()

rpc__dg_call_end()

rpc__dg_call_end()

rpc__dg_call_init()

quack_recvd =0
quack_recvd =1

rpc__dg_call_end()

quack_recvd =0
quack_recvd =1

rpc__dg_call_init() rpc__dg_call_transmit_int()

ccall_reinit()

KEY
normal execution

quit/cancel

rpc__dg_call_init() rpc__dg_call_transmit_int() rpc__dg_call_transceive()

ccall_reinit()

quack_recvd =0
quack_recvd =1

ccall_reinit()

ack

rpc__dg_call_end()



Datagram Protocol Service, part II Revised 7/27/93

7-4 Copyright  1993 Open Software Foundation

Datagram Protocol Service, part II Revised 7/27/93

7-4 Copyright  1993 Open Software Foundation

• Idempotent calls need to spend some time in the xmit state to return acks and/
or out arguments to the client.

• Non-idempotent calls or idempotent calls with multi-fragment “out” arguments
transition into a final state awaiting acknowledgment from the client that all
outs have been received.

On the server side, orphaned calls simply call exit().
Figure 7-2: Server Call Handle State Transitions
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packet type and call state values. Figure 7-3 illustrates, in simplified form, the
packet processing done in the routine do_request_common (in dgslsn.c).
(Callbacks are handled differently from “regular” calls in most respects. We dis-
cuss conversation manager callbacks later in this chapter. A discussion of general-
ized callbacks is beyond the scope of this document.) In the normal case, a
comparison of the incoming packet’s sequence number with the current call’s
sequence number (that is to say, the SCTE’s high_seq value) provides the initial
form of discrimination among incoming packets. Packets with sequence numbers
equal to that of the current call are deemed part of that call. Incoming packets with
higher sequence numbers are assumed to be part of a new call. Incoming packets
with lower sequence numbers are ignored.
Request processing can take one of half a dozen paths. These are expressed as an
enumerated type defined in do_request_common. Figure 7-3 summarizes vari-
ous outcomes of packet analysis. Any incoming packet that is found to be part of
either the current call or a new one will be dispatched for additional processing.
All other outcomes (denoted by shading in the accompanying illustration) result in
the packet being dropped.

Figure 7-3:Analyzing a Received Packet

We describe the other components of the “receive path” in greater detail later on in
this chapter.
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Call Types
In this section, we describe how the datagram RPC protocol service implements
the call semantics defined by the “Operation Attributes” listed in Chapter 4 of the
AES. From the protocol service’s point of view, these attributes require varying
degrees of client/server (sender/receiver) interaction:
maybe essentially a raw datagram, which the sender transmits and forgets

about. No form of response is required (or even allowed), so there
is essentially no client/server interaction at all. Maybe calls are also
idempotent (this is implicit in the attribute, but made explicit in the
packet header flags.) The maybe and broadcast attributes may be
combined.

broadcast calls with the broadcast attribute may generate output, but never
require any other form of acknowledgment. A broadcast datagram
RPC with out arguments completes when any of the recipients
responds. Broadcast calls are also idempotent (this is implicit in the
attribute, but made explicit in the packet header flags.) The broad-
cast and maybe attributes may be combined.

idempotent calls with the idempotent attribute may consist of any number of
packets (fragments), and may be re-run any number of times with
the same result. Clients making idempotent calls typically query
servers when the call does not appear to be making adequate
progress. Beyond that, there is no client/server interaction beyond
the request and response.

at-most-once this is the “default” call attribute. The datagram protocol service
assumes, and enforces, at-most-once call semantics none of the oth-
ers have been specified in the interface definition. Enforcement of
at-most-once semantics requires that the server positively identify
the client by doing a WAY callback, and that the server take further
pains to prevent attempts by the client to re-run such procedures.
(Such attempts are seldom deliberate on the client’s part. They usu-
ally are a side effect of network problems.)

Beyond mere semantic enforcement of formal call attributes, the datagram proto-
col service must also address special situations like:
• calls for which the “out” arguments cannot fit into a single packet (a condition

referred to by the implementors as “large” ins or outs)
• calls that are expected to require long processing times at the server (“slow

calls”)
• calls that involve an extraordinary event such as a fault, quit, or cancel
• callbacks, which come in two types: the generalized kind provided for use by

applications that need such a feature, and the more specialized ones imple-
mented by the conversation manager for use by servers interested in confirm-
ing client identity and monitoring client liveness.
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It’s probably fair to say that most of the complexity in the datagram RPC protocol
service’s call semantic enforcement logic is dedicated to implementing at-most-
once semantics. The less rigorous requirements of maybe, broadcast, and idempo-
tent calls make their handling comparatively simple. However, sensible and effi-
cient handling of callbacks and cancels, not all of which is codified in the AES,
accounts for a good deal of the code content in the datagram RPC protocol service.
In preparation for our discussion of client and server-side call processing, we plan
to spend a few pages here detailing the paths that various combinations of packet
type and call semantic follow through the code on the client and server sides of an
RPC.

Maybe Calls
Calls with maybe semantics behave essentially like raw datagrams do. The entire
call is required to fit within a single fragment, so the client stub simply sets up the
call (rpc__dg_call_start), then sends it (rpc__dg_call_transceive).
Servers execute maybe calls as they would any idempotent call. Figure 7-4 illus-
trates a maybe call.

Figure 7-4: A Maybe Call

Incoming maybe packets are subjected to a server boot time check. If the test fails,
the packets are simply dropped. Maybe calls that fail or fault generate the appro-
priate type of response to the caller.

Broadcast Calls
Rather than being sent to a specific endpoint, broadcast RPCs are sent to a net-
work’s broadcast address. Any server that exports the call’s interface will receive
and get a chance to execute the call, so the concept of bound_server_instance
is meaningless in a broadcast context. On the client side, broadcast calls forego the
usual binding serialization (intended to make sure that calls using a given binding
handle will be transmitted to the same server instance) and are also forced to wait
for transmission until there are no other calls in progress, since broadcast calls are
always transmitted with a partial binding that would effectively unbind any bound
server instance associated with an in-progress call.
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Clients making broadcast calls must also be able to cope with the likelihood that
they will receive multiple responses to the request. The first one to return is used.
Any others are discarded. Broadcast calls never return a fault or reject packet,
since, with many servers executing a call, the knowledge that one of them encoun-
tered trouble of some sort is probably not too useful to the client, and could be con-
fusing. Since there can be no response beyond a single packet and since we assume
that there is a high probability that someone out there will execute the call and
return any outs, broadcast calls time out quickly, after three rpc clock ticks. Broad-
cast calls do not ping. Figure 7-5 illustrates a broadcast RPC.

Figure 7-5: A Broadcast Call

 Like maybe calls, broadcast calls are tagged idempotent and are required to fit into
a single packet. They may also be defined, in the interface definition, as broadcast
maybe calls, in which case they are constrained to have no out arguments.

Idempotent Calls
Idempotent calls (Figure 7-6) that do not carry either a broadcast or a maybe
attribute may consist of multiple fragments. When they do, flow control and con-
nection management come into play, meaning that clients, after sending the initial
blast of packets, invoke a timer routine that periodically checks to see if a response
has been received and, if not, begins to generate ping requests attempting to find
out how things are progressing at the server end of the connection. Since at-most-
semantics do not need to be enforced, servers do not need to detect and prevent
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attempted re-runs, so servers and clients do not need to validate each other’s iden-
tity before allowing a call to proceed on a connection. They only need to be able to
carry on a conversation about call progress.

Figure 7-6: An Idempotent Call

Non-Idempotent Calls
Non-idempotent calls; that is to say, calls that must execute at most once, require
somewhat more complicated client/server interaction than other types, and other-
wise complicate packet processing and call execution logic. Before executing such
calls, servers and clients verify each other’s identity by invoking one of the simpli-
fied callbacks described on page 7-20. Non-idempotent calls generate at least one
such callback for every new activity (which is why activity UUID reuse is a good
idea). Non-idempotent calls require the server to make sure that the client believes
the call is complete (i.e., to acknowledge receipt of all the call’s out arguments)
before modifying any internal call state (e.g., freeing outs). Figure 7-7 describes a
simple case of a non-idempotent call.
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Figure 7-7: A Non-Idempotent Call

Authenticated Calls
Not discussed in this document.

“Slow” Calls
A call that does not return in some predetermined interval is subject to invocation
of client ping and (possibly) retransmission logic. In the normal case, the call’s
timer routine begins to ping if the call has not returned after two seconds. This ping
interval increases until either the call returns or the call’s timeout time is reached.
The pings are handled within the conversation manager, as illustrated in Figure 7-
8. Retransmission, if required, is handled through the normal call execution path.
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Figure 7-8: A “Slow” Call (Idempotent)

Multi-Fragment Calls
Any call that is not broadcast or maybe may have more in or out arguments than
will fit into a single packet. Such cases typically involve the flow-control logic
described on page 6-11 to deliver the out packets in one or more blasts of (one
hopes) increasing size. The server only send one acknowledgment per blast. When
the last packet is received, the ins are delivered to the stub for execution. Figure 7-
9 illustrates a simple case.
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Figure 7-9: Multi-Packet Calls

Extraordinary Conditions (Rejects, Faults, Cancels, Orphans)
Calls can fail for several reasons:
• Protocol errors (e.g., attempts to re-run a non-idempotent call, clients picking

up a bad binding, …) cause a call to be rejected by the server.
• Asynchronous cancels in the client (e.g., ^C) must cause the server to take

some appropriate action.
• Organic errors in manager routines may cause synchronous faults during exe-

cution, which should be propagated back to the client.
Figure 7-10 summarizes various extraordinary conditions in terms of the packet
traffic they generate.
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Figure 7-10: Rejects, Faults, Cancels, and Orphans

Packet Processing in the Listener Thread
All packets received by the network listener thread (see page 3-21) are handed off
to a “receive” routine in the network epv. In the case of the datagram RPC protocol
service, this routine is rpc__dg_network_select_dispatch, which consti-
tutes the beginning of the datagram protocol service’s packet processing logic.
We refer to this as “packet processing” because so much of what goes on involves
examining a packet’s header (and, in some cases, body), then making some deci-
sion regarding the appropriate response as well as the correct disposition of the
packet’s data.
Routines that run in the network listener thread (i.e., routines that are called,
directly or indirectly, by rpc__dg_network_select_dispatch) can be cate-
gorized as:
• base routines that “see” all datagram RPC packets received.
• client routines to which packets received on client sockets are directed
• server routines to which packets received on server sockets are directed
There are further sub-specialities within these categories, which we will deal with
later on.
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Top-Level Packet Dispatching
Most of the routines that deal with received packets at the top level are imple-
mented in the files dglsn.c and dglsn.h. The “executive summary” of what
happens at this level would go—in the errorless case—roughly like this:
• Allocate a receive queue element (rqe) to hold the packet’s contents.
• Receive the packet and stuff it into the rqe
• Filter the packet based on knowing what type of packet it is, what kind of

socket (client or server) the packet arrived on, and by examining packet’s
header flags and interface/object UUIDs. Common outcomes of this process
include:

• forward the packet if its interface and object UUIDs do not match
those of a locally-registered interface
• dispatch packets for specialized manager interfaces (e.g., conver-
sation manager)
• look up the call handle with which the packet is associated
• deal with other packet types (e.g., ping, working, fack, …)
• detect callbacks by looking at packet type and the type of socket
on which the packet arrives. For example, when a packet type in the
client-to-server family (request, ping, …) arrives on a client socket,
it indicates that a callback is in progress.

Figure 7-11 is a simplified illustration of listener thread packet processing at the
top level in rpc__dg_network_select_dispatch and recv_dispatch. At
the conclusion of this process, any packet not destined for forwarding or for “spe-
cial handling” by the conversation manager has been handed off to a per-type
“do_” routine. In addition, all packets other than facks or requests have been asso-
ciated with a ccall or an scall, callbacks have been detected and the proper refer-
ence count adjustments made, and the ccall/scall’s last_recv_timestamp and
awaiting_ack fields have been updated.
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Figure 7-11: Listener Thread Routines

Once the initial decisions have been made about the disposition of a packet, the
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dled by routines in dglsn.c, as are packets that carry the conversation manager’s
interface id. We describe the conversation manager and its relations on page 7-20.
We’ll discuss fack handling in the next section.
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which packets have been received (we discuss the theory behind datagram RPC
flow control beginning on page 6-11). Fack processing includes:
• classifying the facks into client-to-server or server-to-client types, based on the

type of socket on which they arrive.
• further classifying facks arriving on client sockets into acknowledgments of in

arguments (the common case) and acknowledgment of out arguments that are
part of a callback.

• associating the fack with a ccall or scall (and making sure to ignore facks for
calls that are in the orphan state)

• processing the fack body’s window_size, serial_num, and selective ack
information and making appropriate blast size and retransmit queue adjust-
ments.

Because of their “bidirectional” nature, boot time validation and processing for
fack packets depends on the type of socket on which the fack arrived. Facks that
are deemed to be a “response” by virtue of having arrived on a client socket and
not having an activity UUID that can be found in the SCALLT are run through the
client-oriented routine rpc__dg_do_common_response, which verifies hat the
server boot time in the packet is correct. “Request” facks are processed through
rpc__dg_server_chk_and_set_sboot.
All fack packets with a length greater than 12 bytes are assumed to contain selec-
tive ack information. This slight overloading of the packet header’s len field
allows compatibility with earlier (NCS) versions of DCE RPC by making it possi-
ble to discriminate between old and new fack packets without requiring an explicit
protocol version number change.

Forwarding
Another set of top-level packet processing routines that deserves at least a little
illumination here are those that deal with packet forwarding. In DCE 1.0.2, packet
forwarding is handled by the rpcd, which we describe in Chapter 5. Even though
the forwarding process involves retransmission of the forwarded packet(s), for-
warding is always an intramachine operation, since the forwarder and the recipient
are required to be on the same host.
Packet forwarding introduces several problems for the runtime:
• Packets that need to be forwarded must be detected more or less upon receipt,

transformed as necessary into forwarded packets, and dispatched to the packet
forwarding function.

• The packet forwarding function must be able to figure out where the packet
should go.

• Forwarded packets must be recomposed into “ordinary” packets upon receipt.
• None of the packet transformation must affect the authentication checksum in

the original packet (i.e., no byte-reordering may take place).
• Packets originating in the NCS RPC world may have their “forwarded” flag set
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incorrectly as far as the DCE RPC runtime is concerned. This condition must
be detected and corrected before any other packet processing is done.

Forwarding a Packet
As we’ve described, received packet processing in the listener thread routine
recv_dispatch checks to see whether the object and interface UUIDs carried in
a packet’s header reference an interface and/or interface/object pair registered on
the local host. If so, the packet is dispatched to rpc__dg_fwd_pkt which invokes
the remote rpc_g_fwd_fn operation to determine the packet’s fate. This opera-
tion is defined in comfwd.h and implemented in rpcd.c. The runtime calls it as a
remote operation via a procedure pointer in rpc__dg_fwd_pkt. It returns one of
three possible packet dispositions:
• drop the packet with no notification to the sender, it cannot be forwarded.
• drop the packet and deliver a reject message to the original sender (unless the

packet is a broadcast RPC) This return code should never happen in DCE
1.0.2.

• forward the packet to the address supplied by the function
If the packet is to be forwarded, it is first transformed into a forwarded packet.
This involves hijacking the first 16 bytes of the packet’s body and inserting a spe-
cial “subheader” there (see page 6-11 for an illustration) that includes:
• a four-byte representation of the packet’s original body length (before insertion

of the subheader)
• an eight-byte representation of the original sender’s address
• a four-byte representation of the original sender’s data representation
This, along with setting the “forwarded” flag in the packet header is all the packet
manipulation that’s necessary when the packet’s original length is at least 16 bytes
less than the maximum packet length. Figure 7-12 describes this process for the
case where rpc__dg_fwd_pkt returns fwd_forward. (In the alternative case,
the rqe is simply freed.)
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Figure 7-12: Forwarding a Packet
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transformation similar to the one previously described for one-part forwards; the
sender’s address retrieved from the body of the first half replaces the address in the
header of the second half, and the packet is now ready to be associated with an
scall or ccall. (The “forwarded” flags are never set on the second half of a two-part
forward.)

Figure 7-13: Processing a Forwarded Packet
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• a client conversation (convc) operation that clients invoke to let servers know
that they are still alive, even though they may not have been heard from with
any “real work” in a while

• a server-side client_rep data structure that identifies a client by means of a
special UUID that, once established, is associated with every call made from
that client’s local address space.

The latter two facilities are part of context handle support, and only come into use
when context handles are specified in an interface definition. The conversation
manager becomes part of every non-idempotent RPC.

The Conversation Manager
Datagram RPC client/server connections generate their own “conversational” traf-
fic unrelated to the content of calls made over them. These conversations concern:
• Client and/or server identity verification, in which clients and servers try to

identify each other by various means (and with varying levels of certainty)
• Liveness tests, in which one party attempts to ascertain whether the other party

is dead or unreachable (both of which amount to the same thing for an RPC).
Any such conversation requires clients and servers to temporarily reverse roles,
and is in effect a callback mechanism. Rather than try to implement conversational
callbacks as part of the normal datagram RPC callback mechanism, the datagram
RPC protocol service provides a simplified, specialized, lightweight facility
known internally as the conversation manager to handle these interactions.
The conversation manager comprises a set of routines defined in dglsn.c and
conv.c. The routines are a combination of packet processing operations and
pseudo-stubs that implement the conversation manager’s “manager routines.”
There is also a conversation thread and a conversation queue that support poten-
tially-long-running conversations that would otherwise block runtime progress.
For the most part, the manager routines simply unmarshal the request packets
(which are fairly uncomplicated) in place and, for local operations (the kind we
will discuss here), construct and transmit the appropriate response. There are four
operations in the conv interface:
conv_who_are_you

When a server receives a non-idempotent request packet that con-
tains a new activity/sequence pair, it sends a conv_who_are_you
request (commonly referred to as a WAY callback), to the client to
ask for the client’s current sequence number.

conv_who_are_you2
This operation (WAY2) is similar to a WAY callback, but also
returns to the caller with a Client Address Space UUID
(cas_uuid), used as part of the runtime’s support for context han-
dles. When a server receives a non-idempotent request packet that
contains a new activity/sequence pair and an indication that a con-
text handle is to be used, it sends a WAY2 request to the client to
ask for the client’s current sequence number and cas_uuid.
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DCE RPC implements the WAY callback type only because it
needs to support earlier (NCS RPC) clients. If it did not need to
make this concession to backward compatibility, all WAY callbacks
would also request the cas_uuid.

conv_who_are_you_auth
Servers call this operation (WAY-AUTH) whenever a new connec-
tion (new activity/sequence) is set up for a call that requires some
form of authentication or authorization.

conv_are_you_there
This operation (AYT) is intended to provide support for a server-
side “ping” analogue, but is not really used in DCE 1.0.2. It may
turn out to be unnecessary, since today, a client that has not trans-
mitted all of its ins and has never pinged the server can be safely
presumed dead.

Currently, all conv operations other than WAY-AUTH are handled via the “fast
path,” on which the requests, represented as free receive queue elements, are sim-
ply handed off to rpc__dg_handle_conv_int, which is responsible for build-
ing and transmitting the appropriate response packet. WAY-AUTH requests, which
involve a potentially time-consuming RPC to the DCE Security Service, are
queued for handling by the conversation manager thread.
The conversation manager’s queue (convq) is a simple structure defined in
dglsn.c, with head and tail pointers as well as its own mutex and condition vari-
able. This queue holds some (small, since it is limited to the number of simulta-
neous in-progress client calls) number of receive queue elements (see page 6-23).
These elements are indexed by the callback’s activity UUID. A conv callback is
its own activity, and conv packets carry this activity UUID in the packet header.
The “parent” activity UUID is included in the conv packet body.
When the first WAY-AUTH request arrives, the runtime initializes the conversa-
tion manager’s queue and starts up the conversation thread. This thread executes
the convq_loop routine, which traverses the queue each time an element is added
(signalled by the change in the queue’s condition variable) and runs the
handle_conv_int routine sequentially on each queue element. Figure 7-14
illustrates the operations of the conversation manager.
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Figure 7-14: The Conversation Manager
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The Server-Side Client Representation
The server side of the datagram RPC runtime associates each client with a “client
rep” data structure defined in dg.h and illustrated here in Table 7-1.

This structure provides a way for a server to associate multiple connections (activ-
ities) with a single remote object, to know how long it has been since that object
last transacted any business with the server, and to know what to do once it has
been determined that the remote object no longer exists. When context handles are
in use, a server associates a client rep structure with one or more SCTEs proceed-
ing roughly as follows:
• a call invokes the rpc__dg_binding_inq_client operation to associate a

client rep the call’s SCTE. If such an association exists, the existing client rep
gets another reference.

• if no client rep exists, the server makes a WAY2 callback and initializes a new
client rep with the returned cas_uuid, a NULL rundown entry, and
last_update=0.

• if the server stub wants to monitor client liveness, it calls
rpc_dg_network_mon, supplying a rundown function pointer. The client
rep’s rundown entry is pointed at the rundown function, and the last_up-
date field is timestamped.

The convc_indy Operation
Clients that are using context handles periodically send an “I’m not dead yet”
(“indy”) request to the server(s) with which they are communicating. The indy
request is the sole operation in the convc_v1_0 interface, which, like the conv
interface, is implemented in pseudo-stub form in the file dgclive.c. Clients
maintain a queue of server bindings to which convc requests should be sent. The
“indy thread” traverses the queue periodically (in DCE 1.0.2, every 20 seconds)
and transmits a convc request to each server represented there. The convc
request contains only the client’s cas_uuid.
Like conv requests, incoming convc requests are handled by the network listener
thread, which dispatches them immediately to the server routine

Table 7-1: rpc_dg_client_rep_t structure

rpc_dg_client_rep_t {

*next /* next element in chain */

cas_uuid /* client address space UUID */

rundown /* pointer to context rundown routine to
call if client dies */

last_update /* rpc_clock_t when we last heard from the
client */

refcnt /* references held to this element */

}
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rpc__dg_handle_convc. A recipient of an indy request simply updates the
associated client rep’s last_update field with the current rpc_clock_t times-
tamp. Figure 7-15 illustrates this process.

Figure 7-15: Client Liveness Maintenance
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• Handling convc requests, as described on page 7-20.
• Associating the packet with a server call handle (SCALL) structure.
• Setting up the executor thread that will, if all goes well. execute the call, and,

in the process, dealing with any complications that may be induced by packet
rationing.

As we’ve described, rpc__dg_do_request calls do_request_common to per-
form the initial filtering of the packet. Figure 7-3 illustrates the operations of
do_request_common. Depending on the outcome of do_request_common,
rpc__dg_do_request will do one of the following:
• respond to a client ping
• transmit an error response if the packet was deemed to be part of an attempted

re-run of an idempotent call
• set up a new Server Connection Table Entry (SCTE) if the packet is part of a

new call
• add the packet to the receive queue for the current call.
• prod the application thread to run the call if it is a callback
Two-part forwarded packets (see page 7-17) are handled at this stage as well, since
each part can be filtered through do_request_common and end up at the “same
place.”
If the value of the scall->call_is_setup field indicates that the call does not
yet have an executor thread, rpc__dg_do_request creates one through a call to
rpc__cthread_invoke_null, passing it the name of the internal
rpc__dg_execute_call function as the routine the thread should run. This rou-
tine will either succeed in making a packet reservation, in which case the call will
be able to proceed toward execution, or it won’t, in which case the entire call must
be “backed out” via a call to rpc__dg_sct_backout_new_call, a function that
simply decrements the SCTE’s high_seq member. When this happens, the serv-
er’s behavior is seen by the client as identical to what it would have been had the
packet been dropped or lost in transmission so the client should eventually retrans-
mit and, with luck, be able to secure a reservation.
We describe packet rationing in more detail in the next section.

Packet Rationing
The datagram RPC protocol service implements a packet rationing scheme
intended to guarantee that, regardless of the number of packets available in the
host system’s packet buffer space, a call will always be able to obtain the packets it
needs to make progress. In this context, we define progress as the ability of a client
and server to exchange at least one packet at a time (i.e., to never block because no
packets can be acquired for transmit or receive queues). The need for this feature
was based on the observation that, in other RPC protocols, call progress can be
slowed or effectively halted when either side of a connection is consuming large
quantities of packets. Packets can be a scarce resource, especially in kernel envi-
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ronments, and much of the motivation for the DCE 1.0.x RPC packet rationing
implementation arose after consideration of the needs of the DCE DFS.
Packet rationing is applicable to both the client (sender) and server (receiver) sides
of an RPC. In this section, we will concentrate on the implementation (and impli-
cations) of packet rationing for receivers.
The fundamental premises of packet rationing are simple:
• The runtime establishes a packet pool consisting of a quantity of packets based

on the expected number of active client and server threads that will need to run
concurrently. At a minimum, this pool must contain (1+2S+2C) packets,
where S represents the maximum number of call executor (server) threads and
C represents the maximum number of concurrent client calls that the system
will be able to support. (The additional packet is for the listener thread.)

• Every call must be able to reserve at least one packet from the packet pool
before it can begin execution. If the system is rationing, any call that does not
have a reservation (as indicated by the state of the common datagram call han-
dle’s has_pkt_reservation flag) won’t be allowed to queue data to its
transmit or receive queues. This enforces enough fairness to prevent packet-
hungry clients or servers from starving those with more modest packet appe-
tites.

• Clients have to acquire a reservation in the rpc__dg_call_start routine. If
they cannot, the call will block. Servers initially try to acquire their reservation
in rpc__dg_do_request. If this fails (it cannot be allowed to block, since it
runs in the listener thread), a second attempt is made after the call is handed off
to the executor thread. If the second attempt fails, the call is “backed out” and
the request effectively dropped, forcing the client to retransmit.

•  A system begins rationing when:
• the number of packets in the pool is less than or equal to the num-
ber of reservations
• a call has blocked awaiting a reservation

• A conversation callback does not need to acquire a reservation. It inherits the
reservation made by the call that induced it.

As an optimization, the actual packet rationing code allocates two packets for
every “reservation,” based on the following observations:
• Receivers hand off packets to stubs without knowing when they will be freed.

Having an extra packet reserved makes it unnecessary for the receiver to take
this uncertainty into account.

• A receiver (server) may need to both queue a packet and do a WAY callback in
order to ensure that the call will progress. Since no packets are delivered to the
stubs until after any required WAY succeeds, having two reserved packets
allows both operations to happen.
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Server Side Rationing Concerns
On the server side of the runtime, it is especially important that new calls be
allowed to get started, even in times of stress. This translates, in the rationing
implementation, to an emphasis on getting running calls to drain their receive
queues, thereby freeing packets.

Figure 7-16: Server Side Packet Rationing

As illustrated in Figure 7-16, rpc__dg_call_recvq_insert has the last
chance at acquiring a reservation. If it can do so, it takes the additional precaution
of making sure the packet is “really needed at this time,” a condition that is satis-
fied only if the packet is the first packet in the queue or will become the first in-
order packet. All other conditions result in the packet being dropped and the client
being forced into retransmission. This strategy keeps queue sizes down (and pack-
ets more available) without—it is hoped—significantly slowing call progress.
Note that on the server side of a system that is rationing, a queued call cannot get a
reservation. Such calls will appear to be set up, but will have no queued data. All
requests that are part of such a call will be dropped, though their senders will
receive (if they asked for one) a fack of fragment number -1 that also indicates a
receive window size of zero.
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Client Side Rationing Concerns
Clients who are also senders (the typical case) cannot drain their transmit queues
until they have made contact with a server. In situations where the client stubs are
generating large outs and no server is available, or (more likely) in a kernel envi-
ronment, it’s possible for a group of intercommunicating processes to expend all
available reservations on data awaiting transmission, leaving them no way to start
any server threads. To avoid this, a quantity of reservations are dedicated to server-
thread startup needs by being “pre-reserved” for use by calls coming in over server
sockets.
A clients does not actually try to get a reservation until after it has established its
call handle and registered its timer routine, since rationing-induced call blockage
has to be handled using the call’s normal retransmission and timeout strategies.
Major Packet Rationing Data Structures and Internal Operations
The global data structure illustrated in Table 7-2 is defined in dgpkt.h and used
to manage the pool of packets available to the datagram RPC runtime. Individual
pool elements (Table 7-3) are defined as a union of two structs, each of which rep-
resents a packet destined for use by a sender or a receiver.
These data structures, along with the call handles of the calls involved in rationing
(waiting for a packet or a reservation) are operated on by a small collection of
internal routines:
rpc__dg_pkt_make_reservation

Depending on the value of this call’s “block” argument, it will
either loop until it can make a reservation (blocking mode) or return
without one. Senders call this routine in rpc__dg_call_start.
Receivers call it twice (as described in the previous section), first in
nonblocking mode in do_request, then in blocking mode in
rpc__dg_execute_call.

rpc__dg_pkt_alloc_rqe, rpc__dg_pkt_alloc_xqe
These routines allocate the rqe or xqe needed to actually receive
or send a packet. A call may block waiting for an xqe, but should
never block waiting for an rqe, since these are all initially allocated
to the listener thread, which never actually queues anything itself.
The actual rqe allocation is requested in the function
rpc__dg_network_select_dispatch, while xqe allocation is
requested in rpc__dg_call_transmit_int.

rpc__dg_pkt_free_rqe, rpc__dg_pkt_free_xqe
These are the inverse of the “alloc” routines above. These functions
also signal any calls that may be waiting for a queue element to
become available.

rpc__dg_pkt_cancel_reservation
This function, typically invoked by rpc__dg_call_end cancels a
call’s reservation, which in turn may take the system out of ration-
ing mode. If that happens, this function also signals any calls that
are waiting on the availability of reservations (first) or packets (sec-
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ond).
rpc__dg_pkt_pool_fork_handler

This function frees up packets on the free list and cleans up the pool
in the postfork child.

Table 7-2: rpc_dg_pkt_pool_t structure

rpc_dg_pkt_pool_t {

pkt_mutex /* the mutex that protects this struc-
ture */

max_pkt_count /* initial number of packets in the pool
(10000) */

pkt_count /* number of packets remaining in the
pool */

reservations /* number of “ordinary” reservation cur-
rently held */

srv_resv_avail /* number of server reservations avail-
able */

active_rqes /* number of rqe’s allocated to active
calls */

active_xqes /* number of xqes allocated to active
calls */

failed_alloc_rqe /* number of receivers blocked awaiting
allocation of an rqe (should always be 0,
since alloc_rqe should never fail) */

blocked_alloc_xqe /* number of senders blocked awaiting
allocation of an xqe */

free_count /* number of elements on the free_list */

free_list /* pointer to the head of a linked list
of free pool elements */

pkt_waiters_head /* pointer to the head of the list of
call handles to signal when a packet
becomes available */

pkt_waiters_tail /* and the tail pointer */

rsv_waiters_head /* pointer to the head of a list of call
handles to signal when a reservation
becomes available */

rsv_waiters_tail /* and the tail pointer */

}
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Call Execution
Once a packet has been added to an SCALL’s receive queue, it becomes “part of”
the call. The call itself will not be executed (that is to say, handed off to the server
stub) until all the packets for it have been received. All of the processing between
rpc__dg_do_request and the actual handoff to the stub takes place in
rpc__dg_execute_call, which itself is being executed in a call thread (see
page 3-13). When it is called by the thread, rpc__dg_execute_call increments
the SCALL’s refcnt field and initially locks the call. The executor thread holds
this reference until the call is dispatched to the stub, but it must periodically release
and reacquire the call lock due to locking hierarchy requirements. Being handed
off to rpc__dg_execute_call does not guarantee that the call will in fact be
executed. There are several potential failures that may crop up in the course of exe-
cuting this function, and much of the complexity in rpc__dg_execute_call is
a consequence of the need to handle these failures robustly.
We can summarize the workings of rpc__dg_execute_call as follows:
• Check to be sure the call is still in the receive state. If it isn’t, assume it was

cancelled and clean up.
• Make sure the call has a packet reservation. This requires unlocking the call

lock, acquiring the global lock, then reacquiring the call lock.
• Prod a waiting client into sending new data if the call is able to get a reserva-

tion
• Enable receipt of async cancels. The call thread running

rpc__dg_execute_call was invoked with async cancellability disabled.
• Create a server binding handle if necessary.
• Call rpc__dg_call_receive_int to retrieve the first packet from the

receive queue
• Retrieve/update the call’s auth info as necessary.
• Verify that the call’s interface and type are supported on the local machine.
• If the call is non-idempotent, verify that the server’s idea of the call’s sequence

number is the same as the client’s by invoking the conversation manager’s
WAY callback if necessary. The call is unlocked during this operation.

Table 7-3: rpc_dg_pkt_pool_elt_t structure

rpc_dg_pkt_pool_elt_t {

*next /* next element on free list */

xqe /* a structure consisting of an xqe type
and a packet body type */

rqe /* a structure consisting of an rqe type
and a raw packet body type */

}
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• Dispatch the call to the stub and free up resources no longer needed.
• Queue (but not transmit) any reject response that may have been generated by

the stub, and/or a response packet for a call that has no “out” arguments.
• Transmit the call’s out arguments when the stub returns.
• Clean up in various ways. This can include flushing any pending cancels, free-

ing the transmit queue, surrendering the call’s packet reservation, and setting
the call’s state to “idle.” Non-idempotent calls and idempotent calls with multi-
packet out arguments transition to the “final” state awaiting acknowledgment
from the client that all the outs have been received. Once this ack comes in,
they transition to the “idle” state.

Figure 7-17 attempts to diagram this process. Shaded areas in the figure indicate
the parts of the execution path where the call is unlocked during (what is expected
to be) a long-running operation. There are several other places in
rpc__dg_execute_call where the call gets momentarily unlocked so that the
global mutex can be acquired. At all such unlock/relock junctures, the call’s state
is examined upon reacquisition o the lock and, if it isn’t recv, the routine jumps to
the END_OF_CALL label on the assumption that some other process has acquired a
call lock in the meantime.
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Figure 7-17: Call Execution
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Ping Handling
Not discussed in this document.

Cancel Processing
Not discussed in this document.


